Unit 1: Introduction

Introduction:-

In 1989, Microchip Technology Corporation introduced an 8-bit micro-
controller called the PIC, which stands for Peripheral Interface Controller. This
microcontroller had small amounts of data RAM, a few hundred bytes of on-chip
ROM for the program, one timer, and a few pins for I/O ports, all on a single chip
with only 8 pins. (Sec Figure 1-2.) It is amazing that a company that began with
such a humble product became one of the leading supplicrs of 8-bit microcon-
trollers in less than a decade. At the time of this writing, Microchip is the number-
one supplier of 8-bit microcontrollers in the world. Since the introduction of the
PIC16xxx, they have introduced an array of 8-bit microcontrollers too numerous
to list here. They include the PIC families of 10xxx, 12xxx, 14xxx, 16xxx, 17xxx,
and 18xxx. They are all 8-bit processors, meaning that the CPU can work on only
8 bits of data at a time. Data larger than 8 bits has to be broken into 8-bit pieces to
be processed by the CPU. One of the problems with the PIC family is that they are
not all 100% upwardly compatible in terms of software when going from one fam-
ily to another family. For example, while the 12xxx/16xxx have 12-bit and 14-bit
wide instructions, the PIC I 8xxx instruction is 16 bits wide with many new instruc-

tions. To run programs written for the PIC12xxx on a PIC18, we must r.ecfompile
the program and possibly change some register locations before loading it into the
PIC18. At the time of this writing, the PIC18xxx family has the highest perform-
ance of all the families of 8-bit PIC microcontrollers. The fact that PIC18xxx is
available in 18- to 80-pin packages makes it an ideal choice for new designs
because it allows an easy migration to more powerful versions of the chip without
losing software compatibility. At this time, no 8-pin version of the PICI8xxx
exists, and that is the main reason to choose other family members of the
10xxx—16xxx if your design calls for a small package. Because this book is about
the PIC18 family, we describe some of the main features of this family and refer
the reader to the Microchip web site for other families of PIC10xxx-16xxx. For
those who have mastered the PIC18 family, understanding the other families is
very easy and straightforward. The following is a brief description of the PIC18
series.

PIC18 features

The PIC18 has a RISC architecture that comes with some standard fcatures
such as on-chip program {code) ROM, data RAM, data EEPROM, timers, ADC,
and USART and I/O ports. See Figure 1-2. Although the size of the program ROM,
data RAM, data EEPROM, and I/O ports varies among the family members, they
all have peripherals such as timers, ADC, and USART. See Figures 1-3 and 1-4.
Due to the importance of these peripherals, we have dedicated an entire chapter to
each one of them. The details of the RAM/ROM memory and I/O features of the
PIC18 are given in the next few chapters.

Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator which does not require any external
components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that
the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO/RAG6 pins of the device has been
stopped.

During normal operation, a WDT time-out generates a device Reset (Watchdog Timer Reset). If the
device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation
(Watchdog Timer wake-up). The TO bit in the RCON register will be cleared upon a WDT time-out.

The Watchdog Timer is enabled/disabled by a device configuration bit. If the WDT is enabled,
software execution may not disable this function. When the WDTEN configuration bit is cleared, the
SWDTEN bit enables/disables the operation of the WDT.

WDTCON: WATCHDOG TIMER CONTROL REGISTER
u-0 U-0 U-0 U-0 U-0 -0 u-0 RMW-0
[~ T - [- - [- [- T — [svom
bit 7 bit 0

bit 7-1 Unimplemented: Read as ‘0’

bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit
1 = Watchdog Timer is on
0 = Watchdog Timer is turned off if the WDTEN configuration bit in the Configuration register = 0

Brown-out Reset (BOR):-

A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set), the Brown-out
Reset circuitry. If VDD falls below parameter DOOS for greater than parameter #35, the brown-out situation
resets the chip. A Reset may not occur if VDD falls below parameter D005 for less than parameter #35. The
chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will then be
invoked and will keep the chip in Reset an additional time delay (parameter #33). If VDD drops below
BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-
up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute the additional
time delay.

In-Circuit Serial Programming (ISP):-

PIC18FXXX microcontrollers can be serially programmed while in the end application circuit. This
is simply done with two lines for clock and data and three other lines for power, ground and the
programming voltage. This allows customers to manufacture boards with unprogrammed devices and then
program the microcontroller just before shipping the product. This also allows the most recent firmware or a
custom firmware to be programmed.

I2C:-
I2C (pronounced I-squared-C) created by Philips Semiconductors and commonly written as 'T2C' stands for

Inter-Integrated Circuit and allows communication of data between 12C devices over two wires. It sends
information serially using one line for data (SDA) and one for clock (SCL).

Master and slave

The phillips 12C protocol defines the concept of master and slave devices. A master device is simply the

device that is in charge of the bus at the present time and this device controls the clock and generates

START and STOP signals. Slaves simply listen to the bus and act on controls and data that they are sent.
The master can send data to a slave or receive data from a slave - slaves do not transfer data between

themselves.

Data and Clock

The I12C interface uses two bi-directional lines meaning that any device could drive either line. In a
single master system the master device drives the clock most of the time - the master is in charge of the
clock but slaves can influence it to slow it down.

Veo

MN—

Re

Rp

PIC

SDA

2-WIRE
SERIAL DATA
BUS

SCL

DS1307 OTHER
REAL TIME PERIPHERAL
CLOCK DEVICE

MICRO-
PROCESSOR

Speed

Standard clock speeds are 100kHz and 10kHz but the standard lets you use clock speeds from zero to
100kHz and a fast mode is also available (400kHz - Fast-mode).
Note that the low-speed mode has been omitted (10kHz) as the standard now specifies the basic system
operating from 0 to 100kHz.

Device addresses

Each device you use on the I2C bus must have a unique address. For some devices e.g. serial memory you
can set the lower address bits using input pins on the device others have a fixed internal address setting e.g. a
real time clock DS1307. You can put several memory devices on the same IC bus by using a different
address for each.

Start data transfer: A change in the state of the data line, from HIGH to LOW, while the clock is HIGH,
defines a START condition.

Stop data transfer: A change in the state of the data line, from LOW to HIGH, while the clock line is
HIGH, defines the STOP condition.

Data valid: The state of the data line represents valid data when, after a START condition, the data line is
stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during
the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number
of data bytes transferred between START and STOP conditions is not limited, and is determined by the
master device. The information is transferred byte-wise and each receiver acknowledges with a ninth bit.

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the
reception of each byte. The master device must generate an extra clock pulse which is associated with this
acknowledge bit. A device that acknowledges must pull down the SDA line during the acknowledge clock
pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related
clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data
to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In
this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition.

DATA TRANSFER ON 2-WIRE SERIAL BUS

N

: , D ‘.
L | R . -
] i]
o MSB } T
i - SLAVE .
[ADDRESS " = X
' RECTION ACKNOWLEDGEMENT
. ECIT © SIGNAL FROM !
——-—-| - RECEIVER
' ACKNOWLEDGEMENT !
o SIGNAL FROM o
o RECEIVER : :
sc. |, | 1 2 & 7\ [al |9 MHU;L& { .
Co ACK ACK .
START STOP CONDITION
e, NEPEATED IF w| _ORREPEATED
conpmon MORE BYTES ARE START CONDITION

TRANSFERRED

Depending upon the state of the R/W bit, two types of data transfer are possible:

1. Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is
the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each
received byte. Data is transferred with the most significant bit (MSB) first.

2. Data transfer from a slave transmitter to a master receiver. The first byte (the slave address) is
transmitted by the master. The slave then returns an acknowledge bit. This is followed by the slave
transmitting a number of data bytes. The master returns an acknowledge bit after all received bytes other
than the last byte. At the end of the last received byte, a *not acknowledge’ is returned.

The master device generates all of the serial clock pulses and the START and STOP conditions. A
transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START
condition is also the beginning of the next serial transfer, the bus will not be released. Data is transferred
with the most significant bit (MSB) first.

1. Transmitter mode: Serial data and clock are received through SDA and SCL. After each byte is received
an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of
a serial transfer. Address recognition is performed by hardware after reception of the slave address and
direction bit. The address byte is the first byte received after the start condition is generated by the master.
The address byte contains the 7 bit address of slave, followed by the direction bit (R/W) which, for a write,
is a 0. After receiving and decoding the address byte the slave device outputs an acknowledge on the SDA

line. After the acknowledges the slave address + write bit, the master transmits a register address to the
slave. This will set the register pointer on the slave. The master will then begin transmitting each byte of
data with the slave acknowledging each byte received. The master will generate a stop condition to
terminate the data write.

DATA WRITE - SLAVE RECEIVER MODE

A
<Slave Address> 1% <Ward Address (n)> <Data(n)= <Data (n+1)> <Data (n+X)>
| 's | 1101000 [0 | A \xxxxxxxx | A | xooo0000c | A | oo | A | xooooxxx | A [P
5 — START (L

//
DATA TRANSFERRED
P - STOP (¥+1 BYTES + ACKNOWLEDGE)

*R/W - READ/WRITE OR DIRECTION BIT. ADDRESS = DOh

A - ACKNOWLEDGE

2. Receiver mode: The first byte is received and handled as in the slave receiver mode. However, in this
mode, the direction bit will indicate that the transfer direction is reversed. Serial data is transmitted on SDA
by the slave while the serial clock is input on SCL. START and STOP conditions are recognized as the
beginning and end of a serial transfer. The address byte is the first byte received after the start condition is
generated by the master. The address byte contains the 7-bit slave address, followed by the direction bit
(R/W) which, for a read, is a 1. After receiving and decoding the address byte the device inputs an
acknowledge on the SDA line. The slave then begins to transmit data starting with the register address
pointed to by the register pointer. If the register pointer is not written to before the initiation of a read mode
the first address that is read is the last one stored in the register pointer. The slave must receive a Not
Acknowledge to end a read.

DATA READ - SLAVE TRANSMITTER MODE

<Slave Address> l% <Datain)> <Data(n+1)> <Data (n+2)> <Data {n+X)=
| 000000 | A XX00000C | A | X0000000K [A | P]

| p |

§ - START
DATA THANSFEHHED
A - ACKNOWLEDGE {X+1 BYTES + ACKNOWLEDGE); NOTE: LAST DATA BYTE IS
P - STOP FOLLOWED BY ANOT ACKNOWLEDGE (A) SIGNAL)
A - NOT ACKNOWLEDGE
*R/W = READ/WRITE OR DIRECTION BIT ADDRESS = D1h

SPI:-

The SPI bus was originally started by Motorola Corp. {now Freescale), but
in recent yvears has become a widely used standard adapted by many semiconduc-
tor chip companies. SPI devices use only 2 pins for data transfer, called SDI (Din)
and SDO (Dout), instcad of the & or more pins used in traditional buses. This
reduction of data pins reduces the package size and power consumption drastical-
ly, making them ideal for many applications in which space is a major concern.
The SPI bus has the SCLK (shift ciock) pin to synchronize the data transfer
between two chips. The last pin of the SPI bus is CE {chip enable), which is used
to initiate and terminate the data transfer. These four pins, SDI1, SDC, SCLK, and
CE, make the SPI a 4-wire interface. See Figure 16-1. There is alse a widely used
standard called a 3-wire interface bus, In a 3-wire interface bus, we have SCLEK
and CE, and only a single pin for data transfer. The SPI 4-wire bus can become a
3-wire interface when the SDI and SO data pins are tied together. However, there
are some major differences between the SPI and 3-wire devices in the data trans-
fer protocol. For that reason, a device must support the 3-wire protocol internally
in order to be used as a 3-wire device. Many devices such as the DS1306 RTC
{real-time clock) support both SP1 and 3-wire protocols.

D
SDO\v.__»SDO 0 Do
sDi-~ ™ SsDl :
SCLK—»SCLK | ——
CE =CE D7 - 07
uC | uC . |
STOBE —T [
il RAW
Figure 16-1. SPI Bus vs. Traditional Parallel Bus Connection to
Microcontroller

Harvard vs. Von-Neumann Architecture

Every microprocessor must have memory space to store program (code)
and data. As we have seen so far, the PIC is no exception with its code ROM space
and data RAM (file register) space. While code provides instructions to the CPU,
the data provides the information to be processed. The CPU uses buses (wire
traces) to access the code ROM and data RAM memory spaces. The early com-
puters used the same bus for accessing both the code and data. Such an architec-
ture is commonly referred to as von Neumann (Princeton) architecture. That
means for von Neumann computers, the process of accessing the code or data
could cause them to get in each other’s way and slow down the processing speed
of the CPU, because each had to wait for the other to finish fetching. To speed up
the process of program execution, some CPUs use what is called Harvard archi-
tecture. In Harvard architecture, we have separate buses for the code and data
memory. Thal means that we need four sets of buses: (1) a set of data buses for
carrying data into and out of the CPU, (2) a set of address buses for accessing the
data, (3) a set of data buses for carrying code into the CPU, and (4) an address bus
for accessing the code.

Aq
ol — [|
von Neumann Architecture CPU
CODE DATA
MEMORY MEMORY
Dy
— L]
D,
8-bit 1B-bit
DATARAM Ag Ac Aa A, CODE
{file reg) ROM
i T CPU -
Harvard Architecture Up to 4kbyte <_.__._.._ _> Up to 2Mbyte
4kx8 1Mx16
WER) g Av (i)
Dy, Do Agg Aty Dys Do
D
7 Do

Figure 2-14. von Neumann vs. Harvard Architecture

CISC and RISC Architecture
In the early 1980s, a controversy broke out in the computer design com-

munity, but unlike most controversies, it did not go away. Since the 1960s, in all
mainframes and minicomputers, designers put as many instructions as they could
think of into the CPU. Some of these instructions performed complex tasks. An
exampic is adding data memory locations and storing the sum into memory.
Naturally, microprocessor designers followed the lead of minicomputer and main-
frame designers. Because these microprocessors used such a large number of
instructions and many of them performed highly complex activities, they came to
be known as CISC (complex instruction set computer). According to several stud-
ies in the 1970s, many of these complex instructions etched into the brain of the
CPU were never used by programmers and compilers. The huge cost of imple-
menting a large number of instructions (some of them complex) into the micro-
processor, plus the fact that a good portion of the transistors on the chip are used
by the instruction decoder, made some designers think of simplifying and reduc-
ing the number of instructions. As this concept developed, the resuiting processors
came to be known as RISC (reduced instruction set computer).

RISC processors have a fixed instruction size. In a CISC microcontroller
such as the 8051, instructions can be 1, 2, or even 3 bytes.

This variable instruction size makes the task of the instruction decoder very
difficult because the size of the incoming instruction is never known. In a RISC
architecture, the size of all instructions is fixed. Therefore, the CPU can decode the
instructions quickly.

One of the major characteristics of RISC architecture is a large number of
registers. All RISC architectures have at least 32 registers. Of these 32 registers,
only a few are assigned to a dedicated function. One advantage of a large number
of registers is that it avoids the need for a large stack to store parameters. Although
a stack can be implemented on a RISC processor, it is not as essential as in CISC
because so many registers are available. In the PIC microcontrollers the use of a
256-byte bank for the file register satisfies this RISC feature.

WREG Register

In the CPU, registers are used to store information temporarily. That infor-
mation could be a byte of data to be processed, or an address pointing to the data
to be fetched. The vast majority of PIC registers arc 8-bit registers. In the PIC there
is only one data type: 8-bit. The 8 bits of a register are shown in the diagram below.
These range from the MSB (most-significant bit) D7 to the LSB (least-significant
bit) DO. With an 8-bit data type, any data larger than 8 bits must be broken into
8-bit chunks before it is processed.

D7 | D6 | D5 | D4 | D3 | D2 I D1 I DO

The 8-bit WREG register is the most widely used register in the PIC micro-
controller. WREG stands for working register, as there is only one. The WREG
register is the same as the accumulator in other microprocessors. The WREG reg-
ister is used for all arithmetic and logic instructions. To understand the use of the
WREG register, we will show it in the context of two simple instructions: MOVE
and ADD.

THE PIC FILE REGISTER

The PIC microcontroller has many other registers in addition to the WREG
register. They are called data memory space to distinguish them from program
(code) memory space. The data memory space in PIC is a read/write (static RAM)
memory. In the PIC microcontroller literature, the data memory is also called the
file register.

File register (data RAM) space allocation in PIC

The file register is read/write memory used by the CPU for data storage,
scratch pad, and registers for internal use and functions. As with WREG, we can
perform arithmetic and logic operations on many locations of the file register data
RAM. The PIC microcontrollers’ file register size ranges from 32 bytes to several
thousand bytes depending on the chip. Even within the same family, the size of the
file register data RAM varies from chip to chip. Notice that the file register data
RAM has a byte-size width, just like WREG. The file register data RAM in PIC is
divided into two sections: (a) Special Function Registers (SFR), and (b) General-
Purpose Registers (GPR). The general-purpose register section is also referred to
as General-Purpose RAM (GP RAM). We examine each section separately.

SFRs (Special Function Registers)

The Special Function Registers (SFRs) are dedicated to specific functions
such as ALU status, timers, serial communication, I/O ports, ADC, and so on. The
function of each SFR is fixed by the CPU designer at the time of design because
it is used for control of the microcontroller or peripheral. The PIC SFRs are 8-bit
registers. The number of locations in the file register set aside for SFR depends on
the pin numbers and peripheral functions supported by that chip. That number can
vary from chip to chip even among members of the same family. Some have as few
as 7 (8-pin PIC12C508 with no on-chip analog-to-digital converter) and some
have over a hundred (40-pin PIC18F458 with on-chip analog-to digital converter).
For example, the more timers we have in a PIC chip, the more SFR registers we
will have. We will study and use many SFRs in future chapters.

GPR (General-Purpose Registers or RAM)

The general-purpose registers are a group of RAM locations in the file reg-
ister that are used for data storage and scratch pad. Each location is 8 bits wide and
can be used to store any data we want as long as it is 8-bit. Again, the number of
RAM locations m the file register that are set aside for gencral-purpose registers
can vary from chip to chip, cven among members of the same family. In the PIC
controllers, the space that is not allocated to the SFRs typically is used for gener-
al-purpose registers. That means in a PIC chip with a thousand-byte file register,
no more than 100 byles are used for SFRs and the rest are used for general-pur-
pose registers. A larger GPR size means more difficulties in managing these reg-
isters if you use Assembly language programming. In today’s high-performance
microcontroller, however, with over a thousand bytes of GPR, the job of manag-
ing them is handled by the C compilers. Indeed, the C compilers arc the very rca-
son we need a large GPR since it makes it casicr for C compilers to store parame-
ters and perform their jobs much faster, See Table 2-1 for a comparison of file reg-
isters among various PIC chips. Also see Figure 2-2.

Table 2-1: File Register Size for PIC Chips

File Register SFR Available space for GPR
(Bytes) = (Bytes) + (Bytes)

PIC12F508 32 7 235

PIC16F84 80 12 68

PIC18F1220 512 256 256

PIC18F452 1792 256 1536

PIC18F2220 768 256 512

PIC18F458 1792 256 1536

PIC18FB722 4096 158 3938

GP RAM vs. EEPROM in PIC chips

Note that there are two RAM columns in the chip information section of
the Microchip web site. One refers to the general-purpose registers’ (GP RAM)
size, and the other is the EEPROM size. GP RAM (which constitutes most of the
file register) must not be confused with the EEPROM data memory. The GPRs are
used by the CPU for internal data storage, whereas the EEPROMSs are considered
as an add-on memory that one can also add externally to the chip. In other words,
while many PIC chips have zero bytes of EEPROM data memory, it is impossible
for a microcontroller to have zero size for the file register. The EEPROM memo-
ry of PIC chips is covered in Chapter 14.

-t

FrLUN
FFEN
FFFh

Bank 0

ot B
da] ViaA

8-bit

iimiim space of

file register (data
RAM) in PIC18F
{4096 byte)

Bank 1

Bank 14

Bank 15

¢) Data mamory map

8-bit

0000h
GPRAM |)
4096-128 =
3968 bytes. | Various PIC18
~, Notal <= members have
mambers different amount
have this
_— amount)
F&0h A
SFR
Region All PIC18F
(128bytes) | P chishave
this section
FFFh p
b) Fille register See Chapter 6 for more
GF RAM and SFR entire 4096 of the file
register
8-bit
000k
.\ 128
O7Fh byles
Ly
F80h
FFFh

d) Access Bank

Figure 2-3. File Register for PIC18 Family

File register and access bank in the PIC18

The file register of the PIC18 family can have a maximum of 4096 (4K)
bytes. With 4096 bytes, the file register has addresses of 000-FFFH. The filc reg-
ister in the PIC18 is divided into 256-byte banks. Therefore, we can have up to a
maximum of 16 banks (16 x 256 = 4096). Although not all members of the PIC18
family have that many banks, every PIC18 [amily member has at least one bank
for the file register. This bank is called the access bank and is the default bank
when we power up the PIC18 chip. To simplify the discussion of how to use the
file register in the PIC family, we focus on this single bank that is found in every
member of the PIC18 family. You can examine the ftle registers in other PIC fam-
ilies such as PIC12 and PIC16 at the Microchip website. In this book we concen-
tratc on thc PIC18 scrics with their large file register, although the insight gained
in the process can be applied to the PIC16 and PIC12 series.

Examine the access bank for the PIC18 in Figure 2-3. The 256-byte access
bank is divided into two equal sections of 128 bytes. These 128-byte sections are
given to the general-purpose registers and special function registers. The 128 bytes
from locations O0H to 7FH are set aside for general-purpose registers and are used
for read/write storage, or what is normally called a scratch pad. These 128 loca-
tions of RAM are widely used for storing data and parameters by PIC!& program-
mers and C compilers. Each location of this 128-byte RAM of general-purpose
registers can be accessed directly by its address. We will use these locations in
future chapters to store data brought into the CPU via I/O and serial ports. We will
also use them to define counters for time delay in Chapter 3. The other 128 bytes
of the access bank 1s used for SFRs. It has addresses of FROH to FFFH, as shown
in Figure 2-4. One might wonder why the memory space of the SFRs and GPRs in
the access bank is not contiguous. The reason is to allow the RAM space between
080H and F7FH to be used for the general-purpose registers by various members
of the PIC18 if they implement a larger data RAM size for the file register. A file
register of more than 256 bytes will necessitate bank switching, Bank switching is
a method used to access all the banks of the file register for PIC18 family mem-
bers that have more than the minimum access bank. PIC18 members with a file
register of more than 256 bytes will be discussed in more detail in Chapter 6 when
we discuss bank switching.

PIC18 status register

The status register is an 8-bit register. It is also referred to as the flag reg-
ister. Although the status register is 8 bits wide, only 5 bits of it are used by the
PIC18. The three unused bits are unimplemented and read as 0. The five flags are
called conditional flags, meaning that they indicate some conditions that result
after an instruction is executed. These five flags are C (carry), DC (digital carry),
Z (zero), OV (overflow), and N (negative). See Figure 2-7 for the bits of tlr_lf? sta-
tus register. Each of the conditional flags can be used to perform a conditional
branch (jump), as we will see in Chapter 3.

D7 DO
X X X N Qv z | bC C
C —Carry flag
DC — Digital Carry flag
Z — Zero flag

OV — Overflow flag

N — Negative fiag

X — D5, D6, and D7 are not implemented,
and reserved for future use.

Figure 2-7. Bits of Status Register

C, the carry flag

This flag is set whenever there is a carry out from the D7 bit. This flag bit
is affected after an 8-bit addition or subtraction. Chapter 5 shows how the carry
flag is used.

DC, the digital carry flag

[f there is a carry from D3 to D4 during an ADD or SUB operation, this bit
is set; otherwise, it is cleared. This flag bit is used by instructions that perform
BCD (binary coded decimal) arithmetic. In some microproccssors this is called
the AC flag (Auxiliary Carry flag). See Chapter 5 for more information.

Z, the zero flag

The zero flag reflects the result of an arithmetic or logic operation. If the
result is zero, then Z = 1. Therefore, Z = 0 if the result is not zero. See Chapter 3
to see how we use the Z flag for looping.

OV, the overflow flag

This flag is set whenever the result of a signed number operation is too
large, causing the high-order bit to overflow into the sign bit. In general, the carry
flag is used to detect errors in unsigned arithmetic operations while the overflow
flag is used to detect errors in signed arithmetic operations. The OV and N flag

bits are used for the signed number arithmetic operations and are discussed in
Chapter 5.

N, the negative flag

Binary representation of signed numbcrs uses D7 as the sign bit. The neg-
ative flag reflects the result of an arithmetic operation. If the D7 bit of the result is
zero, then N = 0 and the result is positive. If the D7 bit is one, then N = 1 and the
result is negative. The negative and OV flag bits are used for the signed number
arithmetic operations and are discussed in Chapter 5.

PIC18F458/452 PIN CONNECTION

The PIC18F458 family members come in different packages, such as DIP
(dual in-line package), QFP (quad flat package), and LLC (leadless chip carrier).
They all have many pins that are dedicated to various functions such as I/0, ADC,
timer, and interrupts. Note that Microchip provides an 18-pin version of the PIC18
family with a reduced number of I/O ports for less demanding applications.
Because the vast majority of developers use the 40-pin chip, however, we will con-
centrate on that. Figure 8-1 shows the pins for the PIC18F458.

40 PIN DIP
MCLRVpp 1 \v’ 4013 RB7/PGD
RAO/ANO/Cyrer 12 398 RB&/PGC
RA1/AN1 =13 383 RB5/PGM
RA2/AN2Vrer. &34 PIC18F458 37 RB4
RA3/AN3Ngee. 5 36 RB3/CANRX
RA4/TOCKI ={6 35k RB2/CANTX/INT2
RA5/AN4/SS/LVDIN &7 343 RB1/INT1
REO/ANS/RD =8 333 RBO/INTO
RE1/ANG6/WR/C10UT =19 32k Voo
RE2/AN7/CS/C20UT {10 31 Vss
Voo 11 30 RD7/PSP7/P1D
Vss 12 29 RD6/PSP6/P1C
OSC1/CLKI =13 283 RD5/PSP5/P1B
OSC2/CLKO/RAG {14 27 RD4/PSP4/ECCP1/P1A
RCO/T10SO/T1CLKI 15 26| RC7/RX/DT
RC1/T10S| =16 258 RCB/TX/CK
RC2/CCP1 17 24 RC5/SDO
RC3/SCK/SCL =418 233 RC4/SDI/SDA
RDO/PSPO/C1IN+ =419 223 RD3/PSP3/C2IN-
RD1/PSP1/C1IN- 120 21@ RD2/PSP2/C2IN+

Figure 8-1. PIC18F458 Pin Diagram

Examining Figure &-1, note that of the 40 pins, a total of 33 are set aside
for the five ports A, B, C, D, and E, with their alternate functions. The rest of the
pins are designated as Vdd, GND (Vss), OSC1, OSC2, and MCLR (master clear
reset). Next, we describe the function of each pin.

Vdd (Vece)

Two pins are used to provide supply voltage to the chip. The typical volt-
age source is +3V. Some PIC18F tamily members have lower voltage for Vdd pins
in order to reduce the noise and power dissipation of the PIC system. We can
choose other options for the Vdd voltage level by setting the bits in the configura-
tion register. The configuration register for Vdd 1s discussed in the next section.

Vss (GND)

Two pins are also used for ground. In chips with 40 pins and more, it is
common to have multiple pins for VCC and GND. This will help reduce the noise
(ground bounce) in high-frequency systems, as discussed in Appendix C.

OSC1 and 0OSC2

The PIC18F has many options for the clock source. Most often a quartz
crystal oscillator is connected to input pins OSC1 and OSC2. The quartz crystal
oscillator connected to the OSC1 and OSC2 pins also needs two capacitors. One
sidc of cach capacitor is connccted to the ground as shown in Figure 8-3. Notc that
PIC18F microcontrollers can have speeds of 0 Hz to 40 MHz.

MCLR

Pin 1 (in the PIC18F458 40-pin DIP) is the MCLR (master clear reset) pin.
It is an input and is active-LOW (normally HIGH). When a LOW pulse is applied
to this pin, thc microcontroller will reset and terminate all activities. This is often
referred to as a power-on reset (POR).

Program counter value upon reset

Activating a MCLR reset will cause
all values in the registers to be lost. Table 8-1
provides a partial list of PIC18F registers and
their values after power-on reset. From Table
8-1 we note that the value of the PC (program
counter) is 0 upon reset, forcing the CPU to
fetch the first opcode from ROM memory
location 00000. This means that we must
place the first byte of opcode in ROM loca-
tion (because that is where the CPU expects
to find the first instruction.

Minimum connections:-

Table 8-1: RESET Values for

Some PIC18 Registers
Register Reset Value (hex)
PC 000000
WREG 00

SP 00
TRISA-TRISE FF

Figurcs 8-2a and 8-2b show two ways of connecting the MCLR pin to the
power-on reset circuitry. Figurc 8-2b uses a momentary switch for reset circuitry.
The most difficult time for any system is during the power-up. The CPU needs
both a stable clock source and a stable voltage lcvel to function properly. The
PIC18 chips come with some features that help the reset process. We can choose
these features by setting the bits in the configuration register. The configuration
register for the reset pin is discussed in the next section. There are other sources of
reset in the PIC18 family, and they are discussed in future chapters.

The pins discussed so far must be connected no matter which family mem-
ber is used. They are the minimum pin connections that every PIC18 must have.
See Figure 8-3.

vd Vdd

Vdd Vdd

10K 10K

270
MCLR MCLR

Momentary

Switch —|
¢

Figure 8-2a. PIC18F458 Figure 8-2b. PIC18F438
Power-On Reset Circuit Power-On Reset with a
Momentary Switch
Vdd
P18F458
11] vdd
32| vdd
10K§ oscil13) izlEF
1 u
270 | o= [10MHz
1
L NI MCLRVpp oscal4 T !
Reset 22pF
Switch ' ¥
121 Vss
311 vss
v

Figure 8-3. Minimum Connection for PIC18F458

