
Unit 1: Introduction

Introduction:-

Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator which does not require any external

components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that

the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO/RA6 pins of the device has been

stopped.

During normal operation, a WDT time-out generates a device Reset (Watchdog Timer Reset). If the

device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation

(Watchdog Timer wake-up). The TO bit in the RCON register will be cleared upon a WDT time-out.

The Watchdog Timer is enabled/disabled by a device configuration bit. If the WDT is enabled,

software execution may not disable this function. When the WDTEN configuration bit is cleared, the

SWDTEN bit enables/disables the operation of the WDT.

WDTCON: WATCHDOG TIMER CONTROL REGISTER

bit 7-1 Unimplemented: Read as ‘0’

bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit

1 = Watchdog Timer is on

0 = Watchdog Timer is turned off if the WDTEN configuration bit in the Configuration register = 0

Brown-out Reset (BOR):-
A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set), the Brown-out

Reset circuitry. If VDD falls below parameter D005 for greater than parameter #35, the brown-out situation

resets the chip. A Reset may not occur if VDD falls below parameter D005 for less than parameter #35. The

chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will then be

invoked and will keep the chip in Reset an additional time delay (parameter #33). If VDD drops below

BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-

up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute the additional

time delay.

In-Circuit Serial Programming (ISP):-
PIC18FXXX microcontrollers can be serially programmed while in the end application circuit. This

is simply done with two lines for clock and data and three other lines for power, ground and the

programming voltage. This allows customers to manufacture boards with unprogrammed devices and then

program the microcontroller just before shipping the product. This also allows the most recent firmware or a

custom firmware to be programmed.

I²C:-
I²C (pronounced I-squared-C) created by Philips Semiconductors and commonly written as 'I2C' stands for

Inter-Integrated Circuit and allows communication of data between I2C devices over two wires. It sends

information serially using one line for data (SDA) and one for clock (SCL).

Master and slave

The phillips I2C protocol defines the concept of master and slave devices. A master device is simply the

device that is in charge of the bus at the present time and this device controls the clock and generates

START and STOP signals. Slaves simply listen to the bus and act on controls and data that they are sent.

The master can send data to a slave or receive data from a slave - slaves do not transfer data between

themselves.

Data and Clock

The I2C interface uses two bi-directional lines meaning that any device could drive either line. In a

single master system the master device drives the clock most of the time - the master is in charge of the

clock but slaves can influence it to slow it down.

Speed

Standard clock speeds are 100kHz and 10kHz but the standard lets you use clock speeds from zero to

100kHz and a fast mode is also available (400kHz - Fast-mode).

Note that the low-speed mode has been omitted (10kHz) as the standard now specifies the basic system

operating from 0 to 100kHz.

Device addresses

Each device you use on the I2C bus must have a unique address. For some devices e.g. serial memory you

can set the lower address bits using input pins on the device others have a fixed internal address setting e.g. a

real time clock DS1307. You can put several memory devices on the same IC bus by using a different

address for each.

Start data transfer: A change in the state of the data line, from HIGH to LOW, while the clock is HIGH,

defines a START condition.

Stop data transfer: A change in the state of the data line, from LOW to HIGH, while the clock line is

HIGH, defines the STOP condition.

Data valid: The state of the data line represents valid data when, after a START condition, the data line is

stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during

the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number

of data bytes transferred between START and STOP conditions is not limited, and is determined by the

master device. The information is transferred byte-wise and each receiver acknowledges with a ninth bit.

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the

reception of each byte. The master device must generate an extra clock pulse which is associated with this

acknowledge bit. A device that acknowledges must pull down the SDA line during the acknowledge clock

pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related

clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data

to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In

this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition.

DATA TRANSFER ON 2-WIRE SERIAL BUS

Depending upon the state of the R/W bit, two types of data transfer are possible:

1. Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is

the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each

received byte. Data is transferred with the most significant bit (MSB) first.

2. Data transfer from a slave transmitter to a master receiver. The first byte (the slave address) is

transmitted by the master. The slave then returns an acknowledge bit. This is followed by the slave

transmitting a number of data bytes. The master returns an acknowledge bit after all received bytes other

than the last byte. At the end of the last received byte, a ’not acknowledge’ is returned.

The master device generates all of the serial clock pulses and the START and STOP conditions. A

transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START

condition is also the beginning of the next serial transfer, the bus will not be released. Data is transferred

with the most significant bit (MSB) first.

1. Transmitter mode: Serial data and clock are received through SDA and SCL. After each byte is received

an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of

a serial transfer. Address recognition is performed by hardware after reception of the slave address and

direction bit. The address byte is the first byte received after the start condition is generated by the master.

The address byte contains the 7 bit address of slave, followed by the direction bit (R/W) which, for a write,

is a 0. After receiving and decoding the address byte the slave device outputs an acknowledge on the SDA

line. After the acknowledges the slave address + write bit, the master transmits a register address to the

slave. This will set the register pointer on the slave. The master will then begin transmitting each byte of

data with the slave acknowledging each byte received. The master will generate a stop condition to

terminate the data write.

DATA WRITE - SLAVE RECEIVER MODE

2. Receiver mode: The first byte is received and handled as in the slave receiver mode. However, in this

mode, the direction bit will indicate that the transfer direction is reversed. Serial data is transmitted on SDA

by the slave while the serial clock is input on SCL. START and STOP conditions are recognized as the

beginning and end of a serial transfer. The address byte is the first byte received after the start condition is

generated by the master. The address byte contains the 7-bit slave address, followed by the direction bit

(R/W) which, for a read, is a 1. After receiving and decoding the address byte the device inputs an

acknowledge on the SDA line. The slave then begins to transmit data starting with the register address

pointed to by the register pointer. If the register pointer is not written to before the initiation of a read mode

the first address that is read is the last one stored in the register pointer. The slave must receive a Not

Acknowledge to end a read.

DATA READ - SLAVE TRANSMITTER MODE

SPI:-

Harvard vs. Von-Neumann Architecture

CISC and RISC Architecture

WREG Register

Minimum connections:-

