Unit 2: Instruction set and programming of PIC 18

Addressing modes:-

The CPU can access data in various ways. The data could be in a register,
or in memory, or provided as an immediate value. These various ways of access-
ing data are called addressing modes. In this chapter we discuss PIC18 addressin g
modes in the context of some examples.

The various addressing modes of a microprocessor are determined when it
is designed, and therefore cannot be changed by the programmer. The PIC18 pro-
vides a total of three distinct addressing modes. They are as follows:

1. Immediate
2. Direct
3. Register indirect

1. Immediate addressing mode:-

In this addressing mode, the operand is a literal constant. In immediate
addressing mode, as the name implies, the operand comes immediately after the
opcode when the instruction is assembled. Notice that immediate data is called a
literal in the PIC. This addressing mode can be used to load information into
WREG and selected registers, but not to any file register. The immediate address-
ing mode is also used for arithmetic and logic instructions. Examine the following
examples.

MOVLW 0x25 ;load 25H into WREG
SUBLW D'62! ;subtract WREG from &2
ANDLW B'0100Q00C' ;AND WREG with 40H

2. Direct addressing mode:- o
In direct addressing mode, the operand data is 1n a

RAM memory location whose address is known, and this address is given as a part
of the instruction. Contrast this with immediate addressing mode in which the
operand data itself is provided with the instruction. While the letter .“L’.’ in the
instruction means literal (immediate), the letter “F” in the instruction signifies the
address of the file register location. See the example below, and note the letter F

in the instructions.

MOVLW 0x56 ;WREG = 56H (immediate addressing mode)
MOVWF 0x40 ;copy WREG into fileReg RAM location 40H
MOVFF 0x40,0x50 ;copy data from loc 40H to 50H.



3. Register Indirect addressing mode:-

In the register indirect addressing mode, a register is used as a pointer to
the data RAM location. In the PIC18, three registers are used for this purpose:
FSRO, FSR1, and FSR2. FSR stands for file select register and must not be con-
fused with SFR (special function register). The FSR is a 12-bit register allowing
access to the entire 4096 bytes of data RAM space in the PIC18. We use LFSR
(load FSR) to load the RAM address. In other words, when FSRx are used as
pointers, they must be loaded first with the RAM addresses as shown below.

LFSR 0, 0x30 ;1oad FSRO with 0x30
LFSE 1, 0x40 ;load FSR1 with 0x40
LFSR 2, 0Ox&F ;lcad FSE2 with 0xeF

Because FSRO, FSR1, and FSR2 are 12-bit registers they cannot fit into the
SFR address space unless they are split into pieces of an 8-bit size. That is exact-
ly what PIC18 has done. The FSR registers have the low-byte and high-byte parts
called FSRxL and FSRxH, as shown in the SFR table of Table 6-1. In Table 6-1
we see FSROL and FSROH, representing the low and high parts of the 12-bit FSRO
register. Note that the FSRxH is only 4-bit and the upper 4 bits are not used.
Another register associated with the register indirect addressing mode is the INDF
(indirect register). Each of the FSRQ, FSR1, and FSR2 registers has an INDF reg-
ister associated with it, and these are called INDFO, INDF1, and INDF2. When we
move data into INDFx we are moving data into a RAM location pointed to by the
FSR. In the same way, when we read data from the INDF register, we are reading
data from a RAM location pointed to by the FSR. This is shown below.

LFSR 0, 0Ox30 ;FSRO = 30H RAM location pointer

MOVWF INDFO ;copy contents of WREG into RAM
;location whose address is held by
;12-bit FSRO register

Stack and Stack pointer:-

The stack is read/writc memory (RAM) used by the CPU to store some
very critical information temporarily. This information usually is an address, but it
could be data as well. The CPU needs this storage area because there are only a
limited number of registers. The stack in the PIC18 is 21-bit because the program
counter is 21-bit. This means that it is used for the CALL instruction to make sure
that the PIC knows where to come back to after execution of the called subroutine.
A 21-bit stack can take values of 00000 to 1FFFFFH, just like the program count-
er. If the stack is RAM, there must be a register inside the CPU to point to it. The
register used to access the stack is called the SP (stack pointer) register. The PIC18
has a 5-bit stack pointer, which can take values of 00 to 1FH. That gives us a total



of 32 locations where each location is 21 bits wide. This is shown in Figure 3-7.
When the PIC18 is powered up, the SP register contains value 0. This means that
stack location | is the first location used for the stack because the SP points to the
last-used location. That mcans that location 0 of the stack is not available and we
have only 31 stack locations in the PIC18.

STACK
POINTER A20 STACK A0
(1F Hex) 11111
Stack pointer 21-hit Stack pointer
increments, - L decrements
as information as information
is pushed into is popped out
stack of stack
{01 Hex) 00001 g  Top of stack (first
available stack location )

ROM width in PIC 18:-

ROM is the memory where code of the program is stored. If we have 16 address lines, it wil give us
2' Jocations, which is 64K bytes of memory space with an address map of 0000-FFFF. CPU’s with 8-bit
data will fetch one byte at a time. To bring in more code information into CPU we can increase the width of
the data bus to 16 bits. For the PIC18, the internal data bus between the code ROM and the CPU is 16 bits.
Therefore, the 64K ROM space is shown as 32K x 16 using 16-bit word size. The widening of the data path
between the program ROM and the CPU is another way in which the PIC designers increased the processing
power of the PIC18 family.

<« 2Byte—»
High Low
1-Byte Byte  Byte
000000h 000001h 000000N 16-bit
000001 h 0000030 000002h ™ A CODE
000002h 000005h 000004h ROM
PiC
cu [ >
A . Organized as -~ ~, ~
— A Aig Dis Dy
Dis I
Dy
AFFFFDh 1FFFFBh AFFFFA
AFFFFER 1FFFFDh 1FFFFCh
1FFFFFh 1FFFFFh 1FFFFER
8-bit 16-bit Wide ROM

Program ROM Width for the PIC18



PIC 18 time dealy and delay calculation:-
In creating a time delay using Assembly language instructions, one must be
mindful of two factors that can affect the accuracy of the delay:
1. The crystal frequency: The frequency of the crystal oscillator connected to the
OSC1 and OSC2 input pins is one ,actor in the time delay calculatlon The

tal frequency.
2. The PIC design: Since the 1970s, both the field of IC technology and the
architectural design of microprocessors have seen great advancements. Due to
the limitations of IC technology and limited CPU design experience for many
years, the instruction cycle duration was longer. Advances in both IC technol-
ogy and CPU design in the 1980s and 1990s have made the singie instruction
cyc1e a common feature of many microcontroilers. Indeed, one way to increase

e
o
o
cL
[4¢]
o
<
=
=

) "c,
=
cr
=
=
=
-

"<l
=
=
:v—
E:
o
cu
o
-1

aw
o
=
o

[+ I
tn >
L4/
an

g

I L,
P—’g S
©

=
4
oz
w0
T £

B 0 g
L <.1
5 &
5
fom
=
L
7

]

e
-}
(D
e
L]
Q
_|..
"D
)
=
En
-
=
o
=
o
3
5
=]
=
(¢}
(@]
2
S,
(4]
—
I:
TR
=
o]
N
E'D
|H‘
=
(4]
g
=
]
"-<
¥4
—
]
(o R
o
=t
=

_—
e
N
C
wl

D

Harvard chstecture to get the maximum amount of Cod and data lnto the
CPU, (b) use RISC architecture features such as fixed-size instructions, and
finally (c) use pipelining to overlap fetching and execution of instructions. We
have examined the Harvard and RISC architectures in Chapter 2. Next, we dis-
cuss pipelining.

Pipelining:-

In early microprocessors such as the 8085, the CPU could either fetch or
execute at a given time. In other words, the CPU had to fetch an instruction from
memory, then execute it, and then fetch the next instruction, execute it, and so on.
The idea of pipelining in its simplest form is to allow the CPU to fetch and exe-
cute at the same time, as shown in Figure 3-9.

Non-pipeline fetch 1 exec 1 fetch 2 exec 2 fetch 3 exec 3
Pipeline fetch 1 exec 1
fetch 2 exec 2
fetch 3 exec 3
fetch 4 exec 4
fetch 5 exec 5

Figure 3-9. Pipeline vs. Non-pipeline



Instruction cylce time for PIC:-

It takes a certain amount of time for the CPU to execute an instruction. In
the PIC, this time is referred to as instruction cycles (referred to as machine cycles
in some other CPUs). Because all the instructions tn the PIC18 are either 2-byte or
4-byte, most instructions take no more than one or two instruction cycles to exe-
cute. (Notice, however, that some instructions such as BTFSS could take up to
three instruction cycles.) Appendix A provides a list of PIC18 instructions and
their cycles. In the PIC family, the length of the instruction cycle depends on the
frequency of the oscillator connected to the PIC system. The crystal oscillator,
along with on-chip circuitry, provide the clock source for the PIC CPU (see
Chapter 8). In the PIC18, one instruction cycle consists of four oscillator periods.
Therefore, to calculate the instruction cycle for the PIC, we take 1/4 of the crystal
frequency, then take its inverse, as shown in Example 3-14.

Example 3-14

The following shows the crystal frequency for three different PIC-based systems. Find
the period of the instruction cycle in each case.
(a)4 MHz  (b) 16 MHz (c} 20 MHz

Solution:

(a) 4/4 = 1 MHz; instruction cycle is 1/1 MHz = 1 us (microsecond)

{b) 16 MHz/4 = 4 MHz; instruction cycle = 1/4 MHz = 0.25 us = 250 ns (nanosecond)
(c) 20 MHz/4 = 5 MHz; instruction cycle = 1/5 MHz = 0.2 us = 200 ns

Branch Penalty:-

The overlapping of fetch and execution of the instruction is widely used in
today’s microcontrollers such as PIC. For the concept of pipelining to work, we
need a buffer or queue in which an instruction is prefctched and rcady to be exe-
cuted. In some circumstances, the CPU must flush out the queue. For example,
when a branch instruction is executed, the CPU starts to fetch codes from the new
memory location and the code in the queue that was fetched previously is dis-
carded. In this case, the execution unit must wait until the tetch unit fetches the
new instruction. This is cailed a branch penalty. 'I'he penalty is an extra instruction
cycle to fetch the instruction from the target location instead of executing the
instruction right below the branch, Remember that the instruction below the
branch has already been fetched and is next in line ta be executed when the CPU
branches to a different address. This means that while the vast majority of PIC
instructions take only one instruction cycle, some instructions take two or three
instruction cycles. These are GOTO, BRA, CALL, and all the conditional branch
instructions such as BNZ, BC, and so on. The conditional branch instruction can
take only one instruction cycle if it does not jump. For example, the BNZ will
jump if Z = 0 and that takes two instruction cycles. If Z = 1, then it falls through
and it takes only one instruction cycle. See Examples 3-15 and 3-16.



Example 3-15

For a PIC18 system of 4 MHz, find how long it takes to execute each of the following
instructions:

{a) MOVLW (b) DECF (¢} MOVWFE
(d) ADDLW (e) NOP (£) GOTO
{g) CALL (h) BNZ

Solution:

The machine cycle for a system of 4 MHz is 1 s, as shown in Example 3-14. Appendix
A shows instruction cycles for each of the above instructions. Therefore, we have:

Instruction Instruction cycles Time to execute

{a) MOVLW O0x55 1 1 x1 us = 1 s

{b) DECF MYREG 1 1 x1 gs = 1 us

(c) MOVWF 1 1 x1 us = 1 us

(d) ADDLW 1 1 x1 pus = 1 us

{e) NOP 1 1 x1 pus = 1 pus

{f) GOTO 2 2 x1 us = 2 us

{g) CALL 2 2 x1 us = 2 us

{h) BNZ 2/1 (2 ns taken, 1 us if it falls

through)

Example 3-16

Find the size of the delay of the code snippet below if the crystal frequency is 4 MHz:
Solution:

From Appendix A, we have the following machine cycles for each instruction of the

DELAY subroutine:
Ingtruction Cycle

MYREG EQU 0x08 ;:use location 08 as counter
DELAY MOVLW O0xFF i

MOVWEF MYREG 1
AGATIN NOP i

NOP 1

DECF MYREG, F 1

BNZ AGAIN 2

RETURN 1

Therefore, we have a time delay of [(255 x 5)+ 1+ 1+ 1] x 1 us=1278 ps.
Notice that BNZ takes two instruction cycles if it jumps back, and takes only one when
falling through the loop. That means the above number should be 1277 us.




As see ion, a delay subroutine consists of two parts: (1)
ting a counter, and (2) a loop, Most of the time delay is performed by the body of
the loop, as shown in Examples 3-17 and 3-18

LY

Find the size of the delay in the following program if the crystal frequency is 4

MYREG EQU 0x08 ;uge location 08 as counter
ORG 0
BACK MOVLY 0n55 ;load WREG with SEH
MOVWF PORTEB ;send 55H to port B
CALL DELAY ;time delay
MOVLW OxAA ;1load WREG with AA {in hex}
MOVWF PORTB ;eend AAH to port B
CALL DELAY
GOTO BACK ;keep doing this indefinitely

j————  this is the delay subroutine

ORG 300H ;put time delay at address 300H
DELAY MOVLW OXFA ;WREG = 250, the counter
MOVWF MYREG
AGAIN NOP ;no operation wastes clock cycles
NOFP
NOP
DECF MYREG, F
BNZ AGAIN ;repeat until MYREG becomes 0
RETURN ;return to caller
END ;end of asm file

Solution:

DELAY subroutine:
Instruction Cycle

DELAY MOVLW OxFA 1
MOVWE MYREG 1
AGATN NOP 1
NOP 1
NOP 1
DECF MYREG, F 1
BNZ AGATIN 2
RETURN 1

Therefore, we have a time delay of [(250 x6)+ 1+ 1+ 1] x 1 us = 1503 ps.

YT

nz.

From Appendix A, we have the following machine cycles for each instruction of the

Very often we calculate the time delay based on the instructions inside the
loop and ignore the clock cycles associated with the instructions outside the loop.




Loop inside a loop delay:-

Another way to get a large delay is to use a loop inside a loop, which is also
called a nested loop. See Example 3-18. Compare that with Example 3-19 to see
the disadvantage of using many NOPs.

Example 3-18

For a instruction cycle of 1 s, find the time delay in the following subroutine:

R2 EQU  Ox7
R3 EQU 0x8

DELAY Instruction Cycle
MOVLW Dr200! 1
MOVWE R2 1
AGAIN MOVLW D'250° 1
MOVWF R3 1
HERE NOP 1
NOP 1
DECF R3, F 1
BNZ HERE 2
DECF R2, F 1
BNZ AGAIN 2
RETURN 1
Solution:

For the HERE loop, we have (5 x 250) 1 us = 1250 ps. The AGAIN loop repeats the
HERE loop 200 times; therefore, we have 200 x 1250 us = 250000 ps, if we do not
include the overhead. However, the following instructions of the outer loop add to the
delay:

AGAIN MOVLW D'250' 1
MOVWF R3 1
DECF R2, F 1
BNZ AGAIN 2

The above instructions at the beginning and end of the AGAIN loop add 5 x200 x 1 ps
= 1000 ps to the time delay. We should also subtract 200 us for the times BNZ HERE
falls through. As a result we have 250000 + 1000 — 200 = 250800 ps = 250.8 millisec-
onds for the total time delay associated with the above DELAY subroutine. Notice that
in the case of a nested loop, as in all other time delay loops, the time is approximate
because we have ignored the first few instructions and the last instruction, RETURN, in
the subroutine. NOP is a 2-byte instruction. There are 11 instructions in the above
DELAY program, and all the instructions are 2-byte instructions. That means that the
loop delay takes 22 bytes of ROM code space.




Example 3-19

Find the time delay for the following subroutine, assuming a crystal frequency of 4
MHz. Discuss the disadvantage of this over Example 3-18.

MYREG EQU  0x8
Machine Cycle

]_I

DELAY MOVLW D'200"
MOVWE MYREG

|_l

AGATN NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
DECF MYREG, F
BNZ AGATIN

N el ol Y SR S SUR S S S N W

fut

RETURN

Solution:

The time delay inside the AGAIN loop is [200(13 + 2)] x 1 ps = 3000 pus. NOP is a
2-byte instruction, even though it does not do anything except to waste cycle time.
There are 17 instructions in the above DELAY program, and all the instructions are
2-byte instructions. This means the loop delay takes 34 bytes of ROM code space, and
gives us only a 3000 ps delay. That is the reason we use a nested loop instead of NOP
instructions to create a time delay. Chapter 9 shows how to use PIC timers to create
delays much more efficiently.




I/0 PORTS

Depending on the device selected, there are up to five general purpose I/O ports available on
PIC18FXX8 devices. Some pins of the I/O ports are multiplexed with an alternate function from the
peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a
general purpose I/O pin. Each port has two registers for its operation:

* TRIS register (Data Direction register)
* PORT register (reads the levels on the pins of the device)

PORTA:-

PORTA is a 7-bit wide, bidirectional port. The corresponding Data Direction register is TRISA.
Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input. Clearing a TRISA bit (= 0) will
make the corresponding PORTA pin an output.

The RA4 pin is multiplexed with the TimerO module clock input to become the RA4/TOCKI pin. The
other PORTA pins are multiplexed with analog inputs and the analog VREF+ and VREF- inputs. The
operation of each pin is selected by clearing/setting the control bits in the ADCONI1 register (A/D Control
Register 1). On a Power-on Reset, these pins are configured as analog inputs and read as ‘0.

PORTB:-

PORTB is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISB.
Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input. Clearing a TRISB bit (= 0) will
make the corresponding PORTB pin an output.

Four of the PORTB pins (RB7:RB4) have an interruption- change feature.

PORTC:-

PORTC is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISC.
Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input. Clearing a TRISC bit (= 0) will
make the corresponding PORTC pin an output.

PORTC is multiplexed with several peripheral functions.

Pin | Multiplexed Function

RCO Yes Timerl Oscillator for Timerl/Timer3
RC1 Yes Timerl Oscillator for Timer1/Timer3
RC2 No | --—---

RC3 Yes SPI™/I2C™ Master Clock

RC4 Yes I12C Data Out

RC5 Yes SPI Data Out

RC6 Yes USART Async Xmit, Sync Clock
RC7 Yes USART Sync Data Out

PORTD:-

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register for the port is
TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input. Clearing a TRISD bit
(= 0) will make the corresponding PORTD pin an output

PORTD can be configured as an 8-bit wide, microprocessor port (Parallel Slave Port or PSP.
PORTD is also multiplexed with the analog comparator module and the ECCP module.

PORTE:-

PORTE is a 3-bit wide, bidirectional port. PORTE has three pins (REO/ANS/RD,
RE1/AN6/WR/C10OUT and RE2/AN7/CS/C20UT which are individually configurable as inputs or outputs.
The corresponding Data Direction register for the port is TRISE. Setting a TRISE bit (= 1) will make the
corresponding PORTE pin an input. Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an
output.

The TRISE register also controls the operation of the Parallel Slave Port through the control bits in
the upper half of the register. When the Parallel Slave Port is active, the PORTE pins function as its control



inputs. PORTE pins are also multiplexed with inputs for the A/D converter and outputs for the analog
comparators. When selected as an analog input, these pins will read as ‘0’s.

I/0 PORT programming:-
Initializing a PORT:-
CLRF PORTA ; Initialize PORTA by clearing output data latches
CLRF PORTB ; Initialize PORTB by clearing output data latches
CLRF PORTC ; Initialize PORTC by clearing output data latches
MOVLW 0CFh ; Move CF h into WREG
MOVWFEF TRISA ; Move WREG to TRISA; Set RA3:RAOQ as inputs; RA5:RA4 as outputs
CLRF TRISB ; Clear TRISB register; make PORTB as output
SETG TRISC ; Setting TRISC register; make PORTC as input
Toggling PORT:-
Following code will send 55h and AAh continuously to PORTD or toggle the PORTD
CLRF PORTD ; Initialize PORTD by clearing output data latches
CLRF TRISD ; Clear TRISD register; make PORTD as output
Back: MOVLW 55h ; Move 55h to WREG register
MOVWF PORTD ; Move WREG to PORTD:; i.e. PORTD=55h
CALL Delay ; time delay
MOVLW 0AAh ; Move AAh to WREG register
MOVWF PORTD ; Move WREG to PORTD:; i.e. PORTD=AAhA
CALL Delay ; time delay

GOTO Back



Write a test program for the PIC18 chip to toggle all the bits of PORTB, PORTC, and
PORTD every 1/4 of a second. Assume a crystal frequency of 4 MHz.

Solution:
;tested with MPLAB for the PIC18F458 and XTAL = 4 MHz

list P=PIC18F458
#include P18F458.INC

Rl equ 0x07
R2 equ 0x08

ORG 0
CLRF TRISE ;make Port B an output port
CLRF TRISC ;make Port C an output port
CLRF TRISD ;make Port D an output port
MOVLW 0x55 ;WREG = 55h
MOVWF PORTB ;put 55h on Port B pins
MOVWF PORTC ;put 55h on Port C pins
MOVWF PORTD ;put 55h on Port D pins
L3 COMF PORTRB,F ;toggle bits of Port B
COMF PORTC,F ;toggle bits of Port C
COMF PORTD,F ;toggle bits of Port D
CALL QDELAY ;quarter of a second delay
BRA L3
jemmm e 1/4 SECOND DELAY
QDELAY
MOVLW D'200°
MOVWF R1
D1 MOVLW D250
MOVWE R2
D2 NOP
NOP
DECF Rz, F
BNZ D2
DECF R1, F
BNZ D1
RETURN
END
Calculations:

4 MHz /4 =1 MHz

1/1MHz=1 us

Delay = 250 x 200 x 5 MC x 1 us = 250,000 ps (if we include the overhead, we will
have 250,800. See Example 3-17 in the previous chapter.)



I/0 bit manipulation:-
Sometimes we need to access only 1 or 2 bits of the port instead of the entire 8 bits. The PIC I/O

ports have capability to access individual bits of the port without alternating the rest of the bits in that port.

An LED is connected to each pin of Port D. Write a program to turn on each LED from
pin DO to pin D7. Call a delay module before turning on the next LED.

Solution:
CLRF TRISD ;make PORTD an output port
BSF PORTD, 0 ;bit set turns onm RDO
CALL DELAY ;delay before next one
ESF PORTD, 1 ;turn on RD1
CALL DELAY ;delay before next one

BSF  PORTD, 2
CALL DELAY
BSF  PORTD, 3
CALL DELAY
BSF  PORTD, 4

CALL DELAY
BSF PORTD, 5 270
CALL DELAY RDO
BSF  PORTD, 6
CALL DELAY LED 2%~
BSF  PORTD, 7
CALL DELAY PIC
270
RD?
LED 25~




Write the following programs:
(a) Create a square wave of 50% duty cycle on bit 0 of Port C.
(b) Create a square wave of 66% duty cycle on bit 3 of Port C.

Solution:
(a) The 50% duty cycle means that the “on” and “off” states (or the high and low por-

tions of the pulse) have the same length. Therefore, we toggle RCO with a time delay
between each state.

EBCF TRISC, O ;clear TRIS bit for RCO = out
HERE BSF PORTC, O ;8et to HIGH RCO (RCO = 1)

CALL DELAY ;call the delay subroutine

BCF PORTC, O JRCO = 0

CALL DELAY

BRA HERE ;keep doing it

Another way to write the above program is:

BCF TRISC, 0 ;make RCO = cut
HERE BRTG PORTC, 0 ;complement bit 0 of PORTC
CALL DELAY ;call the delay subroutine
BRA  HERE ;keep doing it
PIC18F458
RCO

(b) A 66% duty cycle means that the “on” state is twice the “off” state.

BC¥ TRISC, 3 jclear TRISC3 bit for output
BACK BEF PORTC, 3 ;RC3 = 1

CALL DELAY ;jcall the delay subroutine

CaALL DELAY ;twice for 66%

BCF PORTC, 3 ;RC3 = ©

CALL DELAY ;call delay once for 33%

BRA BACK ikeep deoing it

PIC18F458

RC3




Write a program to perform the following:

(a) Keep monitoring the RB2 bit until it becomes HIGH;

(b) When RB2 becomes HIGH, write value 45H to Port C, and also send a HIGH-to-
LOW pulse to RD3.

Solution:
BSF TRISB, 2 ;make RB2Z an input
CLRF TRISC smake PORTC an cutput port
BCF PORTD, 3 ;make RD3 an output
MOVLW 0x45 ;WREG = 45h
AGATN BTFSS PORTRB, 2 ;bit test RB2 for HIGH
BRA AGAIN ;keep checking if LOW
MOVWE PORTC ;issue WREG to Port C
BSF PORTD, 3 ;bit set fileReg RD3 (H-to-L)
BCEF PORTD, 3 ;bit clear fileReg RD3 (L)

In this program, instruction “BTFSS PORTB, 2" stays in the loop as long as
RB2 is LOW. When RB2 becomes HIGH, it skips the branch instruction to get out of
the loop, and writes the value 45H to Port C. It also sends a HIGH-to-LOW pulse to
RD3.

Assume that bit RB3 is an input and represents the condition of a door alarm. If it goes
LOW, it means that the door is open. Monitor the bit continuously. Whenever it goes
LOW, send a HIGH-to-LOW pulse to port RC5 to turn on a buzzer.

Solution:
BSKE TRISR, 3 ;make RB3 an input
BCF TRISC, 5 ;make RC5 an output
HERE BTF3C PORTB, 3 ;keep monitoring RB3 for HIGH
BRA HERE ;stay in the loop
BSFE PORTC, & :make RCS HIGH
RCF PORTC, S ;make RCS5 LOW for H-to-L
BRA HERE

VCC

4.7k PIC

. RB3
Switch Buzzer

N

<




BCD (binary coded decimal) number system

BCD stands for binary coded decimal. BCD is needed because in everyday

life we use the digits 0 to 9 for numbers, not binary or hex num-

bers. Binary representation of 0 to 9 is called BCD (see Figure | P91t BCD
5-1). In computer literature, one encounters two terms for BCD e 0000
1 0001

numbers: (1) unpacked BCD, and (2) packed BCD. We describe 2 0010
each one next. 3 0011
Unpacked BCD : o101

In unpacked BCD, the lower 4 bits of the number repre- —6, gii
sent the BCD number, and the rest of the bits are 0. Example: 8 1000
“0000 1001~ and “0000 0101 are unpacked BCD for 9 and 5, 9 1001
respectively. Unpacked BCD requires 1 byte of memory, or an

8-bit register, to contain it.

Packed BCD

Figure 5-1. BCD Code

In packed BCD, a single byte has two BCD numbers in it: one in the lower

4 bits, and one in the upper 4 bits. For example, “0101 1001” is packed BCD for

59H. Only 1 byte of memory is needed to store the packed BCD operands. Thus
one reason to use nacked BCD is that it is twice as efficient in storing data.

ASCIl numbers

ImMTT

1Y%k

1YY AN Y NATTY

On ASCII keyboards, when the key “0” 1s activated, “011 §000” (30H) 1s
provided to the computer. Similarly, 31H (011 0001) is provided for key “1”, and

50 on, as shown in Table 5-3.

It must be noted that BCD numbers are universal although ASCII is stan-
dard in the United States (and many other countries). Because the keyboard, print-
ers, and monitors all use ASCII, how does data get converted from ASCII to BCD,

and vice versa? These are the subjects covered next.
Table 5-3: ASCII and BCD Codes for Digits 09

Key ASCII (hex) Binary BCD (unpacked)
0 30 011 0000 0000 0000
1 31 011 0001 0000 0001
2 32 011 0010 0000 0010
3 33 011 0011 0000 0011
4 34 011 0100 0000 0100
5 35 011 0101 0000 0101
6 36 011 0110 0000 0110
7 37 011 0111 0000 0111
8 38 011 1000 0000 1000
9 39 011 1001 0000 1001




Packed BCD to ASCII conversion

In many systems we have what is called a reul-time clock (RTC). The RTC
provides the time of day (hour, minutc, sccond) and the date (year, month, day)
continuously, regardless of whether the power is on or off (see Chapter 16). This
data, however, is provided in packed BCD. For this data to be displayed on a
device such as an LCD, or to be printed by the printer, it must be in ASCII format.

To convert packed BCD to ASCII, you must first convert it to unpacked
BCD. Then the unpacked BCD is tagged with 011 0000 (30H). The following
demonstrates converting packed BCD to ASCII. See also Example 5-32.

Packed BCD Unpacked BCD ASCII
29H 024 & O0%H 32H & 39H
0010 1001  ©0O0DO 0010 & 0011 0010 &
0000 1001 0011 1001
Assume that register WREG has packed BCD. Write a program to convert packed BCD
to two ASCII numbers and place them in file register locations 6 and 7

Solution:

BCD_VAL EQU 0x29
L_ASC EQU 0x06 ;set aside file register location
H ASC EQU 0x07 ;set aside file register location

MOVLW BCD_VAL JWREG = 29H, packed BCD

ANDLW OxO0F ;mask the upper nibble (W = 09)
IORLW 0x30 ;make it an ASCII, W = 3%H ('9')
MOVWF L RASC ;save it (L _ASC = 39H ASCII char}
MOVLW BCD VAL ;W = 29H get BCD data once more
ANDLW O0xFOQ ;mask the lower nibble (W = 20H)
SWAPF WREG,W ;swap nibbles (WREG = 02ZH)

IORLW 0x30 ;make it an ASCII, W = 32H ('2")
MOVWF H ASC ;save it (H_ASC = 32H ASCII char)

ASCII to packed BCD conversion

To convert ASCII to packed BCD, you first convert it to unpacked BCD (to
get rid of the 3), and then combine it to make packed BCD. For example, for 4 and
7 the keyboard gives 34 and 37, respectively. The goal is to produce 47H or “0100
01117, which is packed BCD. This process is illustrated next.

Key  ASCII Unpacked BCD Packed BCD
4 34 00000100

7 37 0000111 01000111 which is 47H



MYBCD EQU 0x20 ;set aside location in file registex

MOVLW A'4" ;WREG = 34H, hex for ASCIT char 4
ANDLW OxOF ;mask upper nibble (WREG = 04}
MOVWF MYBCD ;save it in MYBRCD loc

SWAPF MYRCD, T ;MYBCD = 40H

MOVLW A'7' ;WREG = 37H, hex for ASCII char 7
ANDLW 0OXOF ;mask upper nibble (WREG = 07)
IORWF MYBCD,F sMYBCD = 47H, a packed BCD

After this conversion, the packed BCD numbers are processed and the
Fesult will be in packed BCD format. As we saw earlier in this chapter, a special
Instruction, “DAW”, requires that the data be in packed BCD format.

Bank switching:-

The PIC18 microcontroller has a maximum of 4K of data RAM space.
Although not all members of the family have the entire RAM installed, every
member of the family has at least the access bank for the file register. The file reg-
ister RAM is divided into banks of 256 bytes each, which gives us a total of 16
banks in the PIC18. The minimum bank that every PIC18 has is called the access
bank, as we discussed in Chapter 2. The access bank is made of 128 bytes of lower
addresses and 128 bytes of higher addresses. While the lower 128 bytes of address
space 000-07FH are used for general-purpose RAM, the higher 128 bytes are ded-
icated to the SFRs (special function registers) residing in address space
F80-FFFH. The vast majority of the PIC18 chips we see on the Microchip web site
have more than just the access bank. In this section we show how to use bank
switching to take advantage of the entire data RAM space of the PIC18.

8-bit
Bank O ---R:;}M---
Bank 1
L W)
Bank 14
Bank 15 peecccea-
SFR




The BSR register for bank switching:-

we use the BSR (bank select register) to choose
the desired bank. The BSR is an 8-bit register and is part of the SFRs. Of the 8 bits
of the BSR, only 4 least-significant bits are used in the PIC18. The upper 4 bits are
set to zero and are ignored by the PIC18. The 4-bit BSR gives us 16 banks, and
because each bank is 256 bytes, we cover the entire 4096 (16 x 256 = 4096) bytes
of the data RAM file register using bank switching. The 4K (4096) bytes of the
data RAM are organized as banks 0 to F, where the lowest bank, 0, has an address
of 00—FFH, and the highest bank is bank F with the addresses of FOO-FFFH. In
the PIC18, the last 128 bytes of bank F are always set aside for the SFRs, while
general purpose registers always start at address 0 of bank 0. Upon power-on reset,
BSR = 0 (0000 binary), which indicates that only the lowest addresses of data
RAM, from 000 to OFFH, can be used for the general-purpose register in addition
to the SFRs, which always reside in the last half of bank F. Similarly, if we make
BSR = 1 (0001 binary), then PIC18 selects bank 1 using the 100-1FFH address-
es in addition to the SFRs, which use only the last half of the bank with addresses
of FRO-FFFH. To select bank 2, we load BSR with the value 02 (0010 binary),
which allows access to the bank addresses 200-2FF

W.rite a program to copy the value 55H into RAM memory locations 340H to 345H
using:

(a) direct addressing mode.

(b) a loop.

Solution:

(@
MOVLB 0x3 ;BANK 3
MOVLW 0x55 ;load WREG with value 55H
MOVWF 0x40, 1 ;copy WREG to RAM location 340H
MOVWF 0x41, 1 ;jcopy WREG to RAM location 341iH
MOVWF 0x42, 1 icopy WREG to RAM location 342H
MOVWF 0x43, 1 ;copy WREG to RAM location 343H
MOVWF 0x44, 1 ;copy WREG to RAM location 344H



(b)

COUNT EQU 0x10 ;loc 10h
MOVLB 0x3 ;BANK 3
MOVLW 0x5 ;WREG = B
MOVWF COUNT ;load the counter, count = 5
LFSR 0,0x340 ;load pointer. FSRO = 40H, RAM address
MOVLW 0x58§ iWREG = 55h value to be copied
Bl MOVWF INDFOQ, 0 ;copy WREG to RAM loc FSRO points to
INCF FSROL ;increment FSROL pointer
DECF COUNT,F,0 ;jdecrement the counter
BNZ Bl ;loop until counter = zero

The following shows RAM contents after the above program is run:

340 = (55)
341 = (55)
342 = (55)
343 = (55)

344 = (55)



