Unit 3: Facilities in PIC 1S Part 1

Programming timer 0 and 1:-

Every timer needs a clock pulse to tick. The clock source can be internal or
external. If we use the internal clock source, then 1/4th of the frequency of the
crystal oscillator on the OSC1 and OSC2 pins (Fosc/4) is fed into the timer.
Therefore, it is used for time delay generation and for that reason is called a timer.
By choosing the external clock option, we feed pulses through one of the PIC18’s
pins: this 1s called a counter.

Timer0 registers and programming

Timer0 can be used as an &-bit or a 16-bit timer. The 16-bit register of
TimerQ is accessed as low byte and high byte, as shown in Figure 9-1. The
low-byte register is called TMROL (Timer0 low byte) and the high-byte register is
referred to as TMROH (Timer(high byte). These registers can be accessed like any
other special function registers. For example, the instruction “MOVWF TMROL”
moves the value in WREG into TMROL, the low byte of Timer0. These registers
can also be read like any other register. For example, “MOVFF TMROL, PORTB
copies TMROL (low byte of Timer(0) to PORTB.

TMROH TMROL

"\ AN
' Y Y

D15|D14|[D13|{D12|(D11|D10| D9 | D8 | D7 { D6 [D5 | D4 | D31 D2 | D1 | DO

TOCON: TIMERO CONTROL REGISTER:-

| TMROON | TOSBIT | TOCS | TOSE | PSA | TOPS2 | TOPS1 | TOPSO

bit 7 bit 0

bit 7 TMROON: TimerO On/Off Control bit
1 = Enables TimerO
0 = Stops Timer0
bit 6 TOSBIT: Timer(8-bit/16-bit Control bit
1 = TimerO is configured as an 8-bit timer/counter
0 = TimerO is configured as a 16-bit timer/counter
bit5 TOCS: TimerO Clock Source Select bit
1 = Transition on TOCKI pin
0 = Internal instruction cycle clock (CLKO)
bit4 TOSE: TimerO Source Edge Select bit
1 = Increment on high-to-low transition on TOCKI pin
0 = Increment on low-to-high transition on TOCKI pin
bit3 PSA: TimerO Prescaler Assignment bit
1 = TImerO prescaler is not assigned. Timer0 clock input bypasses prescaler.
0 = TimerO prescaler is assigned. TimerO clock input comes from prescaler output.

bit 2-0 TOPS2:TOPS0: Timer(O Prescaler Select bits

111 = 1:256 Prescale value

110 = 1:128 Prescale value

101 = 1:64 Prescale value

100 = 1:32 Prescale value

011 = 1:16 Prescale value

010 = 1:8 Prescale value

001 = 1:4 Prescale value

000 = 1:2 Prescale value

INTCON: INTERRUPT CONTROL REGISTER

| GIE/GIEH | PEIE/GIEL | TMROIE | INTOIE | RBIE | TMROIF | INTOIF | RBIF

bit 7 bit O

bit2 TMROIF: TMRO Overflow Interrupt Flag bit
1 = TMRO register has overflowed
0 = TMRO register did not overflow

Timer1 programming

Timerl is a 16-bit timet, and its 16-bit register is split into two bytes,
referred to as TMRIL (Timerl low byte) and TMR1H (Timerl high byte). See
Figure 9-8. Timerl can be programmed in 16-bit mode only and unlike Timer0, it
does not support 8-bit mode. Timer! also has the TICON (Timer 1 control) regis-
ter in addition to the TMRI1IF (Timerl interrupt flag). The TMRIIF flag bit goes
HIGH when TMRIH:TMRIL overflows from FFFF to 0000. Timer1 also has the
prescalet option, but it only supports factors of 1:1, 1:2, 1:4, and 1:8. See Figure
9-9 for the Timerl block diagram and Figure 9-10 for TICON register options.
The PIRI register contains the TMR1IF flags. See Figure 9-11.

TMR1H TMR1L
\ \

D15|D14 |D13|D12|D11|D10| D9 | D8 | D7 | D6 | D5{ D4 | D3 | D2 | D1 | DO

Figure 9-8. Timer1 High and Low Registers

T1CON: TIMER1 CONTROL REGISTER

| RDI6 | — | TICKPSI | TICKPSO | TIOSCEN | TISYNC [TMRICS | TMRION |
bit 7 bit 0

bit7 RD16: 16-bit Read/Write Mode Enable bit

1 = Enables register read/write of Timerl in one 16-bit operation

0 = Enables register read/write of Timerl in two 8-bit operations
bit6 Unimplemented: Read as ‘0’
bit 5-4 TICKPS1:T1CKPSO0: Timerl Input Clock Prescale Select bits

11 = 1:8 Prescale value

10 = 1:4 Prescale value

01 = 1:2 Prescale value

00 = 1:1 Prescale value
bit3 TI1OSCEN: Timerl Oscillator Enable bit

1 = Timerl1 oscillator is enabled

0 = Timer1 oscillator is shut-off

The oscillator inverter and feedback resistor are turned off to eliminate power drain.
bit2 TI1SYNC: Timerl External Clock Input Synchronization Select bit

When TMRICS = 1:

1 = Do not synchronize external clock input

0 = Synchronize external clock input

When TMRI1CS = 0:

This bit is ignored. Timer1 uses the internal clock when TMRICS = 0.
bit 1 TMRI1CS: Timerl Clock Source Select bit

1 = External clock from pin RCO/T1OSO/T1CKI (on the rising edge)

0 = Internal clock (FOSC/4)
bit0 TMR1ON: Timerl On bit

1 = Enables Timerl

0 = Stops Timerl

PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

PSPIF(1) | ADIF RCIF TXIF SSPIF CCP1IF | TMR2IF | TMR1IF

bit 7 bit 0

bit0 TMR1IF: TMR1 Overflow Interrupt Flag bit
1 = TMR1 register overflowed
0 = TMR1 register did not overflow

16-bit timer programming

The following are the characteristics and operations of 16-bit mode:

. Tt is a 16-bit timer; therefore, it allows values of 0000 to FFFFH to be loaded

into the registers TMROH and TMROL.

After TMROH and TMROL arc loaded with a 16-bit initial value, the timer
must be started. This is done by “BsF Tocon, TMrROON” for Timer0.

After the timer is started, it starts to count up. It counts up until it reaches its
limit of FFFFH. When it rolls over from FFFFH to 0000, it sets HIGH a flag
bit called TMROIF (timer interrupt flag, which is part of the INTCON regis-
ter). This timer flag can be monitored. When this timer flag is raised, one
option would be to stop the timer.

After the timer reaches its limit and rolls over, in order to repeat the process,
the registers TMROH and TMROL must be reloaded with the original value,
and the TMROIF flag must be reset to 0 for the next round.

Steps to program Timer0 in 16-bit mode

To generate a time delay using the Timer0 mode 16, the following steps are

taken:

X

2
3.
4.

5.
6.
1,

Load the value into the TOCON register indicating which mode (8-bit or 16-
bit) is to be used and the selected prescaler option.
Load register TMROH followed by register TMROL with initial count values.
Start the timer with the instruction “BSF TOCON, TMROON".
Keep monitoring the timer flag (TMROIF) to see if it is raised. Get out of the
loop when TMROIF becomes high.
Stop the timer with the instruction “BCF T0CON, TMROON".
Clear the TMRUOIF flag for the next round.
Go back to Step 2 to load TMROH and TMROL again.

To clarify the above steps, see Example 9-3. To calculate the exact time

delay and the square wave frequency gencrated on pin PBS, we need to know the
XTAL frequency. See Example 9-4 and Example 9-5.

Notice in Figurc 9-5 that we should load TMROH first, and then load

TMROL, because the value for TMROH is kept in a temporary register and writ-
ten to TMROH when TMROL is loaded. This will prevent any error in counting if
the TMROON flag is set HIGH.

In the following program, we are creating a square wave of 50% duty cycle (with equal
portions high and low) on the PORTB.5 bit. Timer{ is used to generate the time delay.
Analyze the program.

BCF TRISB, 5 iPBS as an output
MOVLW 0x08 ;Timer0,16-bit,int clk,no prescale
MOVWEF TOCON ;load TOCON regq.

HERE MOVLW OxXFF ;TMROH = FFH, the high byte
MOVWF TMROH ;load Timer0 high byte
MOVLW OxF2 ;TMROL = F2H, the low byte
MOVWF TMROL ;load Timer0 low byte
BCF INTCON, TMROIF ;jc¢lear timer interrupt flag bit
BTG PORTE,5 ;toggle PB5
BSF TOCON, TMROON ;start Timero0

AGAIN BTFSS INTCON, TMROIF ;uonitor Timer0 flag until
BRA AGAIN ;it rolls over
BCF TOCON, TMROON ;stop Timer0
BRA HERE ;load TH, TL again

Solution:

In the above program notice the following steps:

ANl il

TOCON is loaded.

FFF2H is loaded into TMROH-TMROL.

The Timer0 interrupt flag is cleared by the “Bcr 1nTCON, TMROIF” instruction.
PORTB.5 is toggled for the high and low portions of the pulse.

Timer0 is started by the “BSF TOCON, TMROON” instruction.

Timer(Q counts up with the passing of each clock, which is provided by the crystal
oscillator. As the timer counts up, it goes through the states of FFF3, FFF4, FFFS5,
FFF6, FFF7, FFF8, FFF9, FFFA, FFFB, and so on until it reaches FFFFH. One more
clock rolls it to 0, raising the Timer0 flag (TMROIF = 1). At that point, the
“BTFSS INTCON, TMROIF” instruction bypasses the “BRA AGAIN instruction.
Timer0 is stopped by the instruction “BcF Tocon, TMROON”, and the process is
repeated.

Notice that to repeat the process, we must reload the TMROL and TMROH registers, and
start the timer again.

@@~~~

TMROIF=0 TMROIF=0 TMROIF=0 TMROIF=0 TMROIF=1

Calculation the amount of time delay generated by the timer in above example if XTAL=10MHz.

Solution:

The timer works with the Fosc/4 clock; therefore, we have 10 MHz / 4 = 2.5 MHz as
the timer frequency. As a result, each clock has a period of T=1/2.5 MHz = 0.4 ps. In
other words, Timer0 counts up each 0.4 us resulting in delay = number of counts x 0.4

us.
The number of counts for the rollover is FFFFH — FFF2H = ODH (13 decimal).

However, we add one to 13 because of the extra clock needed when it rolls over from
FFFF to 0 and raises the TMROIF flag. This gives 14 x 0.4 us = 5.6 ps for half the pulse.

T dlan namdisan senwimd thhn ticmen Aalosy mamanatad iranar 1a T = 2 v & A =117,

Lol e Clille polioad tne time dclay gudiciaicil U_y ulC timeris 1 =4 X256 WS = il.2 {iS.

Finding values to be loaded into the timer

Assuming that we know the amount of timer delay we need, the question
is how to find the values needed for the TMROH and TMROL registers. To calcu-
late the values to be loaded into the TMROL and TMROH registers, look at
Examples 9-8 and 9-9, where we use a crystal frequency of 10 MHz for the PIC18
system.

Assuming XTAL = 10 MHz and no prescaler we can use the following
steps for finding the TMROH and TMROL registers’ values:

1. Divide the desired time delay by 0.4 us.

2. Perform 65,536 — n, where n is the decimal value we got in Step 1.

3. Convert the result of Step 2 to hex, where yyxx is the initial hex value to be
loaded into the timer’s registers.

4. Set TMROL = xx and TMROH = yy.

Assuming that XTAL = 10 MHz, write a program to generate a square wave with a peri-
od of 10 ms on pin PORTB.3.

Solution:

For a square wave with T = 10 ms we must have a time delay of 5 ms. Because XTAL
= 10 MHz, the counter counts up every 0.4 us. This means that we need 5 ms /0.4 us =
12,500 clocks. 65,536 - 12,500 = 53,036 = CF2CH. Therefore, we have TMROH = CF
and TMROL = 2C.

BCF TRISE, 3 ;PB3 as an output
MOVLW 008 ;Timer0,16-bit, int clk,no prescale
MOVWF TOCON ;locad TOCON reg
HERE MOVLW OXCF ;TMROH = CFH, the high byte
MOVWEF TMROH ;load Timer0 high byte
MOVLW 0x2C ;TMROL = 2CH, the low byte
MOVWF TMROL ;load Timer0 low byte
BCF INTCON, TMROIF ;iclear timer interrupt flag bit
CALL, DELAY
BTG PORTB, 3 ;toggle PB3
BRA HERE ;load TH, TL again
j——————-delay using Timer0
DELAY BSF TOCON, TMROON ;start Timer0
AGAIN BTFSS INTCON, TMROIF ;ymonitor Timer0 flag until
BRA AGAIN ;it rolls over
BCF TOCON, TMRCCN ;stop Timer0
RETURN

8-bit mode programming of Timer0

Thmdhmnabobeumdhl&hnnmﬂ&The8bﬁnwdeﬂbw30ﬂyvﬂu%
of 00 to FFH to be loaded into the timer’s register TMRLO. After the timer is start-
ed, it starts to count up by incrementing the TMROL register. It counts up until it
reaches its limit of FFH. When it rolls over from FFH to 00, it sets HIGH the
TMROIF. See Figure 9-7.

Data Bus

FOSC/4 0 | 8
: 0 POUT
Syne with :
D‘ 1 Internal TMRO
TOCKI pin clocks PSOUT
Programmable 1
TOSE Prescaler (2 TCY delay)
PSA Set interrupt

1
flag bit T
TOPS2:TOPSO o?‘ngovierﬂg::t

TOCS

Note 1: TOCS, TOSE, PSA, TOPS2:TOPSO (TOCON<5:0>).
2: Upon reset, Timer 0 is enabled in 8-bit mode, with clock input from T OCKI, max. prescale.

Figure 9-7. Timer0 8-bit Block Diagram

Steps to program 8-bit mode of Timer0

To generate a time delay using Timer0 in 8-bit mode, take the following
steps:

Load the TOCON value register indicating 8-bit mode is selected.

Load the TMROL registers with the initial count value,

Start the timer.

Keep monitoring the timer flag (TMROIF) to sce if it is raised. Get out of the
loop when TMROIF becomes HIGH.

Stop the timer with the instruction “BCF T0CON, TMROON.

Clear the TMROIF flag for the next round.

7. Go back to Step 2 to load TMROL again.

=

.O‘\"J\

Notice that when we choose the 8-bit option, only the TMROL register is
used and the TMROH has a zero value during the count up. To clarify the above

Assuming that XTAL = 10 MHz, find (a) the frequency of the square wave generated '
on pin PORTB.0 in the following program, and (b) the smallest frequency achievable in
this program, and the TH value to do that.

BCF TRISE, O

MOVLW (0x48

MOVWF TOCON

BCF INTCON, TMROIF
HERE MOVLW 0x5

MOVWF TMROL

CALL DELAY

BTG PORTR, 0O

BRA HERE
;————delay using Timer0
DELAY BSF TOCON, TMROON
AGAIN BTFSS INTCON, TMROIF

BRA AGAIN

BCF TOCON, TMROON

BCF INTCON, TMROIF

RETURN

Solution:

;PB0 as an output

;Timer0, 8-bit,int c¢lk,no prescaler
;load TOCON reg.

;clear timer interrupt flag bit
;TMROL = 5, the low byte

;load Timer byte

;toggle PBO
;load TL again

;start Timex0

;monitor Timer0 flag until

;it rolis over

;stop TimexrO

;clear Timer0 interrupt flag bit

(a) Now (256 - 05) = 251 x 0.4 us = 100.4 ps is the high portion of the pulse. Because
it is a 50% duty cycle square wave, the period T is twice that; as a result T = 2 X
100.4 ps = 200.8 ps, and the frequency = 4.98 kHz.

(b) To get the smallest frequency, we need the largest T, and that is achieved when
TMROH = 00. In that case, we have T =2 x 256 x 0.4 us = 204.8 ps and the fre-
quency = 1 /204.8 us = 4,882.8 Hz.

T2CON: TIMER2 CONTROL REGISTER
| — | TOUTPS3 | TOUTPS2 | TOUTPS1 | TOUTPSO | TMR20N | T2CKPS1 | T2CKPSO |
bit 7 bit 0

bit 7 Unimplemented: Read as ‘0’

bit 6-3 TOUTPS3:TOUTPSO0: Timer2 Output Postscale Select bits
0000 =1:1 Postscale
0001 =1:2 Postscale

1111 =1:16 Postscale
bit 2 TMR20N: Timer2 On bit
1 =Timer2is on
0 = Timer2 is off
bit 1-0 T2CKPS1:T2CKPSO0: Timer2 Clock Prescale Select bits
00 = Prescaleris 1
01 = Prescaleris 4
1x = Prescaleris 16

T3CON:TIMER3 CONTROL REGISTER
| RD16 | TSECCP1 | T3CKPS1 | T3CKPS0 | T3CCP1 | T3SYNC | TMR3CS | TMR3ON |
bit 7 bit 0

bit 7 RD16: 16-bit Read/Write Mode Enable bit
1 = Enables register read/write of Timer3 in one 16-bit operation
0 = Enables register read/write of Timer3 in two 8-bit operations
bit 6,3 T3ECCP1:T3CCP1: Timer3 and Timer1 to CCP1/ECCP1 Enable bits
1x = Timer3 is the clock source for compare/capture CCP1 and ECCP1 modules
01 = Timer3 is the clock source for compare/capture of ECCP1,
Timer1 is the clock source for compare/capture of CCP1
00 = Timer1 is the clock source for compare/capture CCP1 and ECCP1 modules
bit 5-4 T3CKPS1:T3CKPSO0: Timer3 Input Clock Prescale Select bits
11 =1:8 Prescale value
10 = 1:4 Prescale value
01 =1:2 Prescale value
00 =1:1 Prescale value
bit2 T3SYNC: Timer3 External Clock Input Synchronization Control bit
(Not usable if the system clock comes from Timer1/Timer3.)
When TMR3CS = 1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input
When TMR3CS = 0:
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.
bit 1 TMR3CS: Timer3 Clock Source Select bit
1 = External clock input from Timer1 oscillator or T1CKI (on the rising edge after the first
falling edge)
0 = Internal clock (FOSC/4)
bit 0 TMR3ON: Timer3 On bit
1 = Enables Timer3
0 = Stops Timer3

PIC18 Interrupts:-

Interrupt service routine

For every interrupt, there must be an interrupt service routine (ISR), or
interrupt handler. When an interrupt is invoked, the microcontroller runs the inter-
rupt service routine. Generally, in most microprocessors, for every interrupt there
is a fixed location in memory that holds the address of its ISR. The group of mem-
ory locations set aside to hold the addresses of ISRs is called the interrupt vector
rable. In the case of the PIC18, there are only two locations for the interrupt vec-
tor table, locations 0008 and 0018, as shown in Table 11-1. Wc¢ will discuss the dif-
ference between these two in Section 11.6 when we cover interrupt priority.

Table 11-1: Interrupt Vector Table for the PIC18

Interrupt ROM Location (Hex)

Power-on Reset 0000

High Priority Interrupt 0008 (Default upon power-on reset)
Low Priority Interrupt 0018 (See Section 11.6)

Steps in executing an interrupt

Upon activation of an interrupt, the micrecontroller goes through the fol-
lowing steps:

1. It finishes the instruction it is executing and saves the address of the next
instruction (program counter) on the stack.

2. It jumps to a fixed location in memory called the interrupt vector table. The
interrupt vector table directs the microcontroller to the address of the interrupt
service routine (ISR).

3. The microcontroller gets the address of the ISR from the interrupt vector table
and jumps to it. It starts to execute the interrupt service subroutine until it
reaches the last instruction of the subroutine, which is RETFIE (return from
interrupt exit).

4. Upon executing the RETFIE instruction, the microcontroller returns to the
place where it was interruptcd. First, it gets the program counter (PC) address
from the stack by popping the top bytes of the stack into the PC. Then it starts
to execute from that address.

Sources of interrupts in the PIC18

There are many sources of interrupts in the PIC18, depending on which

peripheral is incorporated into the chip. The following are some of the most wide-
ly used sources of interrupts in the PIC18:

1.

4,
5.
6.

There is an interrupt set aside for each of the timers, Timers 0, 1, 2, and so on.
See Section 11.2.

. Three interrupts are set aside for external hardware interrupts. Pins RBO

(PORTB.0), RB1 (PORTB.1), and RB2 (PORTB.2) are for the external hard-
ware interrupts INTO, INT1, and INT2, respectively. See Section 11.3.

Serial communication’s USART has two interrupts, one for receive and anoth-
er for transmit. See Section 11.4.

The PORTB-Change interrupt. See Section 11.5.

The ADC (analog-to-digital converter). See Chapter 13.

The CCP {compare capture pulse-width-modulation). See Chapters 15 and 17.

Enabling and disabling an interrupt

Upon reset, all interrupts are disabled (masked), meaning that none will be

responded to by the microcontroller if they are activated. The interrupts must be
enabled (unmasked) by software in order for the microcontroller o respond to
them. The D7 bit of the INTCON (Interrupt Control) register is responsible for

enabling and disabling the interrupts globally. Figure 11-3 shows the INTCON
register. The GIE bit makes the job of disabling all the interrupts easy. With a sin-
gle instruction (BCF INTCON,GIE), we can make GIE = 0 during the operation
of a critical task. See Figure 11-2.

Steps in enabling an interrupt

1.

2.

To enable any one of the interrupts, we take the following steps:

Bit D7 (GIE) of the INTCON register must be set to HIGH to allow the inter-
rupts to happen. This is done with the “BSF INTCON, GIE” instruction.

If GIE = 1, each interrupt is enabled by setting to HIGH the interrupt enable
(IE) flag bit for that interrupt. Because there are a large number of interrupts
in the PIC18, we have many registers holding the interrupt enable bit. Figure
11-2 shows that the INTCON has interrupt enable bits for Timer0 (TMROIE)
and external interrupt 0 (INTOIE). As we study each of peripherals throughout
the book we will examine the registers holding the interrupt enable bits. It must
be noted that if GIE = 0, no interrupt will be responded to, even if the corre-
sponding interrupt enable bit is high. To understand this important point look
at Example 11-1.

As shown in Figures 11-2 and 11-3, for some of the peripheral interrupts such
as TMR1IF, TMR2IF, and TXIF, we have to enable the PEIE flag in addition
to the GIE bit.

D7 DO

GIE TMROIE | INTOIE

GIE (Global Interrupt Enable)
GIE = 0 Disables all interrupts. If GIE = 0, no interrupt is acknowledged, even if
they are enabled individually.
If GIE =1, interrupts are allowed to happen. Each interrupt source is enabled by set-
ting the corresponding interrupt enable bit.
TMROIE Timer(interrupt enable

= () Disables Timer0 overflow interrupt

= 1 Enables Timer0 overflow interrupt
INTOIE Enables or disables external interrupt O

= 0 Disables external interrupt O

= 1 Enables external interrupt 0
These bits, along with the GIE, must be set high for an interrupt to be responded to.
Upon activation of the interrupt, the GIE bit is cleared by the PIC18 itself to make sure
another interrupt cannot interrupt the microcontrolier while it is servicing the current
one. At the end of the ISR, the RETFIE instruction will make GIE = 1 to allow another
interrupt to come in.
PEIE (PEripheral Interrupt Enable)
For many of the peripherals, such as Timers 1, 2, .. and the serial port, we must ¢nable
this bit in addition to the GIE bit. (See Figure 11-2.)

Figure 11-3. INTCON (Interrupt Control) Register

Show the instructions to (a) enable (unmask) the Timer0 interrupt and external hardware
interrupt 0 (INTO0), and (b) disable (mask) the Timer{ interrupt, then (c) show how to
disable (mask) all the interrupts with a single instruction.

Solution:

(a) BSF INTCON, TMROIE ;enable (unmask) Timer0 interrupt
BSF INTCON, INTOIE ;enable external interrupt 1 (INTO)
BSF INTCON,GIE ;allow interrupts to come in

We can perform the above actions with the following two instructions:

MOVLW B’10110000° ;GIE = 1, TMROIF = 1,INTIFO = 1
MOVWF INTCON ;load the INTCON reg

(b) BCF INTCON,TMROIE ;mask (disable) Timer0O interrupt

(c) BCF INTCON,GIE ;mask all interrupts globally

External interrupts INTO, INT1, and INT2

There are three external hardware interrupts in the PIC18: INTO, INT1, and INT2. They
are located on pins RBO, RB1, and RB2, respectively. See Figures 11-7 and 11-8. On
default, all three hardware interrupts are directed to vector table location 0008H, unless
we specify otherwise. They must be enabled before they can take effect. This is done
using the INTXIE bit. The registers associated with INTxIE bits are shown in Table 11-
3. For example, the instruction “BSF INTCON, INTOIE” enables INTO. The INTO
is a positive-edge-triggered interrupt, which means, when a low-to-high signal is
applied to pin RBO (PORTB.0), the INTOIF is raised, causing the controller to be inter-
rupted. The raising of INTOIF forces the PIC18 to jump to location 0008H in the vector
table to service the ISR. In Table 11-3, notice the INTXIF bits and the registers they
belong to. Upon power-on reset, the PIC18 makes INTO, INT1, and INT2 rising (posi-
tive) edge-triggered interrupts. To make them falling (negative) edge-triggered inter-
rupts, we must program the INTEDGX bits, as we will see shortly.

Examine Program 11-4 and its C version, Program 11-4C, to gain insight into
external hardware interrupts.

Table 11-3: Hardware Interrupt Flag Bits and Associated Registers

Interrupt (Pin) Flag bit _Register Enable bit Register
INTO (RBO) INTOIF INTCON INTOIE INTCON
INT1 (RB1) INTIIF INTCON3 INTI1IE INTCON3

INT2 (RB2) INT2IF INTCON3 INT2IE INTCON3

Program 11-4 connects a switch to INTO and| 342

an LED to pin RB7. In this program, every time
INTO is activated, it toggles the LED, while at the
samc time data is being transferred from PORTC to

INTO (RBC)
(FORTB.O)

LED

PORTB .7

PORTD.

;Program 11-4

ORG COOOH
GOTO MAIN

Figure 11-9. For Program 11-4

;bypass interrupt vector table

;—-on default all interrupts go to to address 00008

ORG 0DO8H

BTFSS INTCON, INTOIF

;interrupt vector table
;Did we get here due to INTC?

RETFIE ;No. Then return to main
GOTO INTO ISR ;Yes. Then go INTO ISR
;1—the main program for initialization
ORG 0010Q0H
MAIN BCF TRISB,7 ;PB7 as an output
BSF TRISB, INTO ;make INTO an input pin
CLRF TRISD ;make PORTD cutput

SETF TRISC

BSF INTCON, INTOIE
BSF INTCON, GIE
MOVFF PORTC, PORTD
BRA OVER

INTO ISR

OCRG 200H

BTG PORTB,7

BCEF INTCON, INTOIF
RETFIE

END

;make PORTC input

;enable INTO interrupt

;enable interrupts globally
;gend data from PORTC to PORTD
;stay in this loop forever

ISR for INTO

;toggle PB7
iclear INTO interrupt flag bit
;return from ISR

PORTB-CHANGE INTERRUPT

The four pins of the PORTB (RB4-RB7) can cause an interrupt when any
changes are detected on any one of them. They are referred to as “PORTB-Change
interrupt” to distinguish them from the INTO-INT2 interrupts, which are also
located on PORTB (RBO-RB2). See Figure 11-15. The PORTB-Change interrupt
has a single interrupt flag called RBIF and is located in the INTCON register, This
is shown in Figure 11-14, In Figure 11-14, also notice the RBIE bit for enabling
the PORTB-Change interrupt. In Section 11.3 we discussed the external hardware
interrupts of INTO, INT1, and INT2. Notice the following differences between the
PORTB-Change interrupt and INTO-INT?2 interrupts:

(a) Each of the INTO-INT2 interrupts has its own pin and is independent
of the others. These interrupts use pins PORTB.0 (RB0), PORTB.1 (RB1), and
PORTB.2 (RB2), respectively. The PORTB-change interrupt uses all four of the
PORTB pins RB4-PB7 and is considered to be a single interrupt even though 1t
can use up to four pins.

(b) While each of the INTO-INT2 interrupts has its own flag, and is inde-
pendent of the others, there is only a single flag for the PORTB-Change interrupt.

(c) While each of the INTO—INT2 interrupts can be programmed to trigger
on the negative or positive edge, the PORTB-Change interrupt causes an interrupt
if any of its pins changes status from HIGH to LOW, or LOW to HIGH. See Figure
11-16.

PORTB-Change is widely used in keypad interfacing as we will see in
Chapter 12. Another way to use the PORTB-Change interrupt is shown in Program
11-8. In that program, we assume a door sensor is connected to pin RB4 and upon
opening or closing the door, the buzzer will sound. See Figure 11-17.

D7 DO

GIE RBIE RBIF

GIE (Global Interrupt Enable)
GIE =0 Disables all interrupts. If GIE = 0, no interrupt is acknowledged, even if
they are enabled individually.
If GIE = 1, interrupts are allowed to happen. Each interrupt source is enabled by set-
ting the corresponding interrupt enable bit.
RBIE PORTB-Change Interrupt Enable

= (0 Disables PORTB-Change interrupt

= 1 Enables PORTB-Change interrupt
RBIF PORTB-Change Interrupt Flag.

= 0 None of the RB4-RB7 pins have changed state

= 1 At least one of the RB4-RB7 pins have changed state
The RBIE bit, along with the GIE, must be set high for any changes on the pins
RB4 RB7 to cause an interrupt. The RB4-RB7 pins must also have been configured as
input pins for this interrupt to work. In order to clear the RBIF flag we must read the
pins of RB4-RB7 and use the instruction “BCF INTCON,RBIF”.

Figure 11-14. INTCON (Interrupt Control) Register

For Program 11-8 we have connected a door sensor to pin RB4 and a buzzer to
pin RC7. In this program, every time the door is opened, it sounds the buzzer by sending

it a square wave frequency.

Sensor PIC18F
(Switch)

Ruzzer

(18 FAr]

\V/
\i

[¥l 4
N7

(PORTC.7)

1——

:Program 11-8

MYREG EQU 0x20

DELRG EQU 0x80
ORG 0000H
GOTO MAIN

;set aside a couple of registers
;for buzzer time delay

;bypass interrupt vector table

;—-on default all interrupts go to to address (0008

ORG 0008H

;interrupt vector table

BTFSS INTCON,RBIF ;:Did we get here due to RBIF?

RETFIE
GOTO PB_ISR

;No. Then return to main
:Yes. Then go ISR

;—-the main program for initialization

ORG 00100H
MAIN BCF TRISC,7

BSF TRISH, 4

BSF INTCON, RBIE

BSF INTCON,GIE
QOVER BRA OVER

e - - — — — — e ——

PB_ISR
ORG 200H
MOVF PORTB,W
MOVLW D'250°
MOVWF MYREG

BUZZ BTG PORTC,7
MOVLW D'255'
MOVWF DELRG

DELAY DECF DELRG, F
BNZ DELAY
DECF MYREG,F
BNZ BUZZ

;:PORTC.7 as an output for buzzer
:PORTB.4 as an input for interrupt
;enable PORTB-Change interrupt
;enable interrupts globally

;stay in this loop forever

————— ISR for PORTB-Change INT

;we must read PORTB

;for delay

;toggle PC7 for the buzzer
;for delay

;keep sounding the buzzer

BCF INTCON,RBIF ;and <¢lear RBIF interrupt flag bit

RETFI1E
END

INTERRUPT PRIORITY IN THE PIC18

The next topic that we must deal with is what happens if two interrupts are
activated at the same time? Which of these two interrupts is responded to first?
Interrupt priority is the main topic of discussion in this section.

Setting interrupt priority

In the PIC18 microcontroller, there are only two levels of interrupt priori-
ty: (a) low level, and (b) high level. While address 0008 is assigned to high-prior-
ity interrupts, the low-priority interrupts are directed to address 00018 in the inter-
rupt vector table. See Table 11-5. Upon power-on reset, all interrupts are automat-
ically designated as high priority and will go to address 00008H. This is done to
make the PIC18 compatible with the earlier generation of PIC microcontroliers
such as PIC16xxx. We can make the PIC18 a two-level priority system by way of
programming the IPEN (interrupt priority enable) bit in the RCON register. Figure
11-19 shows the IPEN bit of the RCON register. Upon power-on reset, the IPEN
bit contains 0, making the PIC18 a single priority level chip, just like the
PIC16xxx. To make the PIC18 a two-level priority system, we must first sct the
IPEN bit to HIGH. It is only after making IPEN = 1 that we can assign a low pri-
ority to any of the interrupts by programming the bits called IP (interrupt priority).
Figure 11-20 shows IPR1 (interrupt priority register) with the IP bits for TXIP,
RCIP, TMR11IP, and TMR2IP. If IPEN = 1, then the IP bit will take effect and will
assign a given interrupt a low priority. As a result of assigning a low priority to a
given interrupt, it will land at the address 0018 instead of 0008 in the interrupt vec-
tor table. The IP (interrupt priority) bit along with the IF (interrupt flag) and IE
(interrupt enable) bits will complete all the flags needed to program the interrupts
for the PIC18. Table 11-6 shows the three flags and the registers they belong to for
some of the interrupts used in this chapter. In Table 11-6, notice the absence of the
INTO priority flag. The INTO has only one priority and that is high priority. That
means all the PIC18 interrupts can be assigned a low or high priority level, except
the external hardware interrupt of INTO. Study Figures 11-22 through 11-25 very
carefully. When examining these figures, the following point must be noted. By
making IPEN = 1, we enable the interrupt priority feature. Now we must also
enable two bits to enable the interrupts: (a) We must set GIEH = 1. The GIEH bit
is part of the INTCON register (Figure 11-21) and is the same as GIE, which we
have used in previous sections. In this regard there is no difference between the
priority and no-priority systems. (b) The second bit we must set high is GIEL (part
of INTCON). Making GIEL = | will enable all the interrupts whose IP = 0. That
means all the interrupts that have been given the low priority will be forced to vec-
tor location 00018H.

Table 11-5: Interrupt Vector Table for the PIC18

Interrupt ROM Location (Hex)
Power-on-Reset 0000
High-priority Interrupt 0008 (Default upon power-on reset)

Low-priority Interrupt 0018 (Selected with IP bit)

[IPEN | [| | | | | |

IPEN Interrupt Priority Enable bit
0 = All the interrupts are directed to the vector location 0008 (default).
1 = Interrupts can be assigned a low or high priority.

The importance of IPEN: Upon power-on reset, all the interrupts of PIC18 are direct-
ed to location 0008, making it a single-priority system, just like PIC16xxx. To prioritize
the PIC18 interrupts into low- and high-level priorities, we must make IPEN = 1.
When IPEN = 1, we can assign either a low or a high priority to any of the interrupts by
manipulating the corresponding bit in the IPR (interrupt priority register) for that inter-
rupt. When interrupt priority is enabled (IPEN = 1), we must set both the GIEH and
GIEL bits to high in order to enable the interrupts globally. Notice in Figure 11-21 that
GIE is the same as GIEH.

Figure 11-19. RCON Register. IPEN Allows Prioritizing the Interrupt into 2 Levels

[| [Rep [mxae [[TMR2IP [TMRIIP |

RCIP USART (Serial COM) Receive Interrupt Priority bit
0 = Low priority
1 = High priority
TXIP USART (Serial COM) Transmit Interrupt Priority bit
0 = Low priority
1 = High priority
TMR2IP Timer2 Interrupt Priority bit
0 = Low priority
1 = High priority
TMRI1IP Timerl Interrupt Priority bit
0 = Low priority
1 = High prionty

Figure 11-20. IPR1 Peripheral Interrupt Priority Register 1

Table 11-6: Interrupt Flag Bits for PIC18 Timers

Interrupt Flao bit (Register) Enable bit (Register) Priority (Register
Timer0 TMROIF (INTCON) TMROIE (INTCON) TMROIP (INTCON2)

Timerl TMRIIF (PIR1) TMRIIE (PIE}) TMRIIP (IPR1)
Timer2 TMR2IF (PIR1) TMR2IE (PIE1) TMR2IP (IPR1)
Timer3 TMRGIF (PIR3) TMR3IE (PIE2) TMR3IP (IPR2)
INT1 INTIIF (PIR1) INTIIE (PIE]) INTLIP (INTCON3)
INT2 INT2IF (PIR1) INT2IE (PIE1) INT2IP (INTCON)
TXIE __ TXIF (PIR1) TXIE (PIE]) TXIP (IPR1)

RCIF RCIF (PIR1) RCIE (PIE]) RCIP (IPR1)

RB INT RBIF (INTCON) RBIE (INTCON) RBIP (INTCON2)

Note: INTO has only the high-level priority.

