tha garial fAMmmninian fima rooia toavra ~f tha DIOT1Q
LLlvw B\Jllul | VNSNS SRN LW].L‘Ell:,"ulo Ul w4 L1 O

and show how to program them to transfer and receive data using asynchronous
made. The USART (universal synchronous asynchronous receiver) in the PICI8
has both the synchronous and asynchronous features. The synchronous mode can
be used to transfer data between the PIC and external peripherals such as ADC and
EEPROMs. The asynchronous mode is the one we will use to connect the PIC18-
based system to the IBM PC serial port for the purpose of full-duplex serial data
transfer. In this section we examine the asynchronous mode only. In the PIC
microcontrolier six major registers are associated with the UART that we deal with
in this chapter. They are (a) SPBGR (serial port baud rate generator), (b) TXREG
(Transfer register), (c) RCREG (Receive register), (d) TXSTA (transmit status and
control register), (e) RCSTA (receive status and control register), and (f) PIR1
(peripheral interrupt request registerl). We examine each of them and show how

they are used in full-duplex serial data communication.

SPBRG register and baud rate in the PIC18 Table 10-3: Some

; : PC Baud Rates in
Because IBM PC/compatible computers are so wide-

BIeT R HyperTerminal
Iy used to communicate with PIC18-based sysiems, we will =i 500
emphasize serial communications of the PICI8 with the 2’ 100
COM port of the PC. Some of the baud rates supported by 4,8 00

PC HyperTerminal are listed in Table 10-3. You can examine 9.600
these baud rates by going to the Microsoft Windows o

HyperTerminal program and clicking on the Communication i

' ion. : : 38,400
Settings option. The PIC18 transfers and reccives data seri- 57600
ally at many different baud rates. The baud rate in the PIC18 115: 500

is programmable. This is done with the help of the 8-bit reg-
ister called SPBRG. For a given crystal frequency, the value
loaded into the SPBRG decides the baud rate. The relation between the value
loaded into SPBRG and the Fosc (frequency of oscillator connected to the OSC1
and OSC2 pins) is dictated by the following formula:

Desired Baud Rate = Fosc/(64X — 64) = Fosc/64(X + 1)

where X is the value we load into the SPBGR register. Assuming that Fosc
= 10 MHz, we have the following:

Desired Baud Rate = Fose/64(X ~ 1) = 10 MHz/64(X + 1) = 6250 Hz/(X ~ 1)

To get the X value for different baud rates we can solve the equation as fol-

lows:
X = (156250/Desired Baud Rate) - 1

Table 10-4 shows the X values for the different baud rates if Fosc = 10
MHz. Ancther way to understand the SPBRG values in Table 10-4 is to look at

them from the nPTQnF‘(“hUP of the instruction cvele fime. As we discussed in I‘\l’PUl_

4 2287820 Silke p=—ia¥ LRIV ISR LRV UL W YN

ous chapters, the PICIS divides the crystal frequency (Fosc) by 4 to get the instruc-
tion cycle time frequency. In the case of XTAL = 10 MHgz, the instruction cycle
frequency 1s 2.5 MHz. The PIC18’s UART circuitry divides the instruction cy¢le
frequency by 16 once more before it is used by an internal timer to set the baud

LN s e 14-/r\1-1\11

rate. Therefore, 2.5 MHz divided by 16 gives 156,250 Hz. This is the number we

5
use to find the SPBRG value shown in Table 10-4.
ws the

LW}
verify the data in Table 10-4. Table 10-5 shows the SPBRG values with the crys-

tal frequency of 4 MHz (Fosc = 4 MHz).
Example 10-1

With Fosc = 10 MHz, i
(a) 9600 (b) 4800

o
=
fw
N
o]
=
[
-
4]
]
|
e
=]
!
L
=
o
=
47}
p
(=
[
-t
o
=
<
s
fm
o
=]
—
=]
=
-
=
ag
o
2
=,
»
w
T
(423

Solution:

Because Fosc = 10 MHz, we have 10 MHz/4 = 2.5 MHz for the instruction cycle fre-
quency. This is divided by 16 once more before it is used by UART. Therefore, we have
2.5 MHz/16= 156250 Hz and X = (156250 Hz/Desired Baud Rate) — 1:

(a) (156250/9600) — 1 =16.27 — 1 = 15.27 = 15 =F (hex) is loaded into SPBRG
(b) (156250/ 4800) — 1 = 32,55 — 1 = 31.55 = 32 = 20 (hex) is loaded into SPBRG
(c) (156250/ 2400) — 1 = 65.1 — 1 = 64.1 = 64 = 40 (hex) is loaded into SPBRG

(d) (156250/ 1200) — 1 = 130.2 — 1 =129.2 = 129 = 81 (hex) is loaded into SPBRG

Notice that dividing the instruction cycle frequency by 16 is the setting upon Reset. We
can get a higher baud rate with the same crystal by changing this default setting. This is
done by making bit BRGH = 1 in the TXSTA register. This is ¢xplained at the end of
this section.

10 MHz
Instruction cycle freq 156,250 Hz
XTAL o~ +4 o =16 e
oscillator 2.5 MHz by UART To UART
{0 set the
baud rate

Table 10-4: SPBRG Values for Various Baud Rates (Fosc = 10 MHz,
BRGH = 0)

Baud Rate SPBRG (Decimal Value) SPBRG (Hex Value)

38400 3 3
19200 7 7
9600 15 F
4800 32 20
2400 64 40
1200 129 81

Note: For Fosc = 10 MHz we have SPBRG = (156,250/BaudRate) — 1

Table 10-5: SPBRG Values for Various Baud Rates (Fosec =4 MHz, BRGH
= 0)

Baud Rate SPBRG (Decimal Value) SPBRG (Hex Value)

19200 2 2
2600 5 5
4800 12 0C
2400 25 19
1200 51 33

Note: For Fosc = 4 MHz we have 4 MHz/4 = 1 MHz for instruction cycle freq. The frequency
used by the UART is | MHz/16 = 62,500 Hz. That means SPBRG = (62500/Baud Rate) — |

TXREG register

TXREG is another 8-bit register used for serial communication in the
PIC18. For a byte of data to be transferred via the TX pin, it must be placed in the
TXREG register. TXREG is a special function register (SFR) and can be accessed
like any other register in the PIC18. Look at the following examples of how this
register is accessed:

MOVLW 0x41 ;WREG=41H, ASCII for letter 'A'
MOVWE TXREG ;copy WREG into TXREG

MOVFF PORTB, TXREG ;copy PORTB contents into TXREG

The moment a byte is written into TXREG, it is fetched into a register
called TSR (transmit shift register). The TSR frames the 8-bit data with the start
and stop bits and the 10-bit data is transferred serially via the TX pin. Notice that
while TXREG 1s accessible by the programmer, TSR 1s not accessible and 1s strict-
ly for internal use.

RCREG register

Similarly, when the bits are received serially via the RX pin, the PICI1S8
deframes them by eliminating the stop and start bits, making a byte out of the data
received, and then placing it in the RCREG register. The following code will dump
the received byte into PORTB:

MOVFF RCREG, PORTB ;copy RXREG to PORTB

TXSTA (transmit status and control register)

The TXSTA register is an 8-bit register used to select the
svnchronous/asynchronous modes and data framing size, among other things.
Figure 10-9 describes various bits of the TXSTA register. In this textbook we use
the asynchronous mode with a data size of 8 bits. The BRGH bit 1s used to select
a higher speed for transmisston. The default is lower baud rate transmission. We
will examine the higher transmission rate at the end of this chapter. Notice that D6
of the TXSTA register determines the framing of data by specifying the number of
bits per character. We use an 8-bit data size. There are some applications for the
9-bit in which the ninth bit can be used as an address.

CSRC X9 TXEN I SYNC 0 BRGH | TRMT I TX9D
CSRC D7 Clock Source Select (not used in asynchronous mode, therefore D7 = 0.)

TX9 Do 8-bit Transmii Enable

1 = Select 9-bit transmission

0 = Select 8-bit transmission (We use this option, therefore D6 = 0.)
TXEN D5 Transmit Enable

1 — Teamagrmit]ad

0 = Transmit Disabied

We turn “on” and “off” this bit in order to start or stop data transfer.
SYNC D4 USART mode Select (We use asynchronous mode, therefore D4 = 0.)

1 = Synchronous

0 = Asynchronous
0 D3
BRGH D2 High Baud Rate Select

0 = Low Speed (Default)

1 = High Speed

We can double the baud rate with the same Fosc. See the end of this

section for further discussion on this bit.
TRMT D1 Transmit Shift Register (TSR) Status

1 = TSR empty

0 = TSR full
The importance of the TSR register. To transfer a byte of data serially, we write it
into TXREG. The TSR (transmit shift register) is an internal register whose job is to
get the data from the TXREG, frame it with the start and stop bits, and send it out one
bit at a time via the TX pin. When the last bit, which is the stop bit, is transmitted, the
TRMT {lag is raised to indicate that it is empty and ready for the next byte. When
TSR fetches the data from TXREG, it clears the TRMT flag to indicate it 1s full.
Notice that TSR is a parallel-in-serial-out shift register and is not accessible to the pro-
grammer. We can only write to TXREG. Whenever the TSR is empty, it gets its data
from TXREG and clears the TXREG register immediately, so it does not send out the
same data twice.

TXDY9 DO 9th bit of Transmit Data (Because we use the 8-bit option, we make
DO =0)
Can be used as an address/data or a parity bit in some applications

Figure 10-9. TXSTA: Transmit Status and Control Register

RCSTA (receive status and control register)

The RCSTA register is an 8-bit register used to enable the serial port to
receive data, among other things. Figure 10-10 describes various bits of the
RCSTA register. In this section we use the 8-bit data frame.

SPEN

RX9 ADDE RX9D

SREN | CREN

SPEN D7

RX9 D6

SREN D3
CREN D4

TXD9 DO

Serial port enable bit

1 = Serial port enabled, which makes TX and RX pins as serial port pins
0 = Serial port disabled

9-bit Receive enable bit

1 = Select 9-bit reception

0 = Select 8-bit reception (We use this option; therefore, D6 = 0.}
Single receive enable bit (not used in asynchronous mode D3 = 0}
Continuous receive enable bit

! = Enable continuous Receive {in asynchronous mode)

0 = Disable continuous Receive (in asynchronous mode)

Address delete enable bit (Because used with the 9-bit data frame D3 = ()
Framing error bit

1 = Framing error

0 = No Framing error

Overrun error bit

1 = Overrun error

0 = No overrun error

9th bit of Receive data {Because we use the 8-bit option, we make DO = 0)
Can be used as an address/data or a parity bit in some applicatons.

Figure 10-10. RCSTA: Receive Status and Control Register

= RCIF | IXIF - -

RCIF

TXIF

products.

Receive interrupt flag bit

1 = The UART has reccived a byte of data and it is sitting in the
RCREG register {(receive buffer), waiting to be picked up.

Upon reading the RCREG register, the RCIF is cleared to allow the
pext byte to be received.

0 = The RCREG is empty.

Transmit interrupt flag bit
0 = The TXREG register is full.
1 = The TXREG (transmit butfer) register i1s empty.

The importance of TXIF: To transmit a byte of data, we write it into TXREG. Upon
writing a byte into TXREG, the TXIF flag is cleared. When the entire byte is transmit-
ted via the TX pin, the TXIF flag bit is raised to indicate that it is ready for the next
byte. So, we must monitor this flag before we write a new byte into TXREG, otherwise,
we wipe out the last byte before it is transmitted.

Several bits of this register are used by the timer flag, as we saw in Chapter 9. The
location of the flag bits in the PIR1 register is not fixed and can vary in future PIC13

Figure 10-11. PIR1 (Peripheral Interrupt Register 1)

PIR1 {(peripheral interrupt request register 1)

In Chapter 9, we saw how some of the bits of PIR1 ar¢ uscd by the timers.
Two of the PIRI register bits are used by the UART. They are TXIF (transmit
interrupt flag) and RCIF (receive interrupt flag). See Figure 10-11. We monitor
{poll} the TXIF flag bit to make sure that all the bits of the last bytc arc transmit-
ted before we write another byte into the TXREG. By the same logic, we monitor
the RCIF flag to see if a byte of data has come in yet. In Chapter 11 we will see
how these flags are used with interrupts instead of polling. Next we will examine
how TXIF flags are used in serial data transfer.

Programming the PIC18 to transfer data serially

[n programming the PIC18 to transfer character bytes serially, the follow-
ing steps must be taken:

1. The TXSTA register is loaded with the value 20H, indicating asynchronous
mode with ¥-bit data frame, low baud rate, and transmit enabled.

2. Make TX pin of PORTC (RC6) an output for data to come out of the PIC.

3. The SPBRG is loaded with one of the values in Table 10-4 (or Table 10-5 if
Fosc = 4 MHz) to set the baud rate for serial data transfer.

4. SPEN bit in the RCSTA register is set HIGH to enable the serial port of the
PIC18.

5. The character byte to be transmitted serially is written into the TXREG register.

6. Monitor the TXIF bit of the PIR1 register to make sure UART is ready for next
byte.

7. To transfer the next character, go to Step 5.

Write a program for the PIC18 to transfer the letter ‘G’ serially at 9600 baud, continu-
ously. Assume XTAL = 10 MHz.

Solntion:

MOVLW B'00100000' ;enabkle transmit and chcoose low baud rate

MOVWF TXSTA iwrite to reg
MOVLW D'15! ;9600 bpe (Fosc / (64 * Speed) - 1)
MOVWF SPBRG ;write to reg
BCF TRISC, TX ;make TX pin of PORTC an ocutput pin
BSF RCSTA, SPEN ;enable the entire serial por:t cof PICLS
OVER MCVLW A'G! ;ASCII letter 'G' teo be transferred
81 BTFSS PIR1, TXIF ;wait until the last bit is gone
BRA S1 ;Etay in loop
MOVWF TXREG ;1opad the value to be transferred

BRA OVER ;keep sending letter 'G'

Write a program to transmit the message “YES” serially at 9600 baud, 8-bit data, and 1
stop bit. Do this forever.

Solution:
MOVLW B'00100000' ;enable transmit and choose low baud
MOVWF TXSTA ;Wwrite to reg
MOVLW D'15' ;9600 bps (Fosc / (64 * Speed) - 1)
MOVWF SPBRG ;write to reg
BCF TRISC, TX ;make TX pin of PORTC an output pin
BSF RCSTA, SPEN ;enable the serial port

OVER MOVLW A'Y! ;ASCII letter 'Y' to be transferred
CALL, TRANS
MOVLW A'E' ;ASCII letter 'E' to be transferred
CALLL TRANS
MOVLW A'S! ;ASCII letter 'S!' to be transferred
CALL TRANS
MOVLW 0xOC ;NULL to purge the buffer
CALL TRANS
BRA COVER ;keep doing it

TRANS ;----serial data transfer subroutine

S1 BTFSS PIR1, TXIF ;wait until the last bit is gone
BRA 51 ;stay in loop
MOVWF TXREG ;1load the value to be transmitted
RETURN ;return to callerx

Importance of the TXIF flag

To understand the importance of the role of TXIF, look at the following
sequence of steps that the PIC18 goes through in transmitting a character via TX:

1 o

I. The byte character to be transmitted is written into the TXREG register,
2. The TXIF flag is set to 1 internally to indicate that TXREG has a byte and will

not accept another byte until this one is {ransmiited.

3. The TSR (Transmit Shift Register) reads the byte from TXREG and begins to
transfer the byte starting with the start bit.

4. The TXIF is cleared to indicate that the last byte is being transmitted and

TXREG is ready to accept another byte.

The 8-bit character is transferred one bit at a time.

6. By monitoring the TXIF flag, we make sure that we are not overloading the
TXREG register. If we write another byte into the TXREG register before the
TSR has fetched the last one, the old byte could be lost before it is transmitted.

wn

From the above discussion we conclude that by checking the TXIF flag bat,
we know whether or not the PIC18 is ready to transfer another byte, The TXIF flag
bit can be checked by the instruction “BTFSS PIR1, TXIF” or we can use an inter-
rupt, as we will see in Chapter 11. In Chapter 11 we will show how to use inter-
rupts to transfer data serially, and avoid tying down the microcontroller with
instructions such as “BTFSS PIR1, TXIF.

Programming the PIC18 to receive data serially

In programming the PIC18 to receive character bytes sertally, the follow-
ing steps must be taken:

1. The RCSTA register is loaded with the value 90H, to enable the continuous
receive in addition to the 8-bit data size option.

2. The TXSTA register is loaded with the value O0H to choose the low baud rate
option.

3. SPBRG is loaded with one of the values in Table 10-4 to set the baud rate

(assuming XTAL = 10 MHz).

Make the RX pin of PORTC (RC7) an input for data to come into the PIC18.

The RCIF flag bit of the PIR1 register is monitored for a HIGH to see if an

entire character has been received yet.

6. When RCIF is raised, the RCREG register has the byte. Its contents are moved
into a safe place.

7. To receive the next character, go to Step 5.

Importance of the RCIF flag bit
In receiving bits via its RX pin, the PIC18 goes through the following

w ok

steps:

1. It receives the start bit indicating that the next bit is the first bit of the charac-
ter byte it is about to recetve.

2. The 8-bit character is received one bit at time. When the last bit is received, a
byte is formed and placed in RCREG

3. The stop bit is received. It is during receiving the stop bit that the PIC18 makes
RCIF - 1, indicating that an entire character byte has been received and must

Program thc PICI8 to receive bytes of data serially and put them on PORTB. Set the:
baud rate at 9600, 8-bit data, and 1 stop bit.

Solntion:
MOVLW B'10010000" ;enable receive and serial port itself
MOVWF RCSTA ;write to reg
MOVLW D'15' ;9600 bps (Fosc / (64 * Speed) - 1)
MOVWF SPBRG ;write to reg
BSF TRISC, RX ;make RX pin of PORTC an input pin
CLRF TRISB jmake port B an output port

;get a byte from serial port and place it on PORTE

R1 BTFSS PIR1, RCIF :check for ready
BRA RrR1 ‘ ;stay in lcop
MOVEF RCREG, PORTB ;save value into PORTRB

BRA Rl ;keep doing that

be picked up before it gets overwritten by another incoming character.

4. By checking the RCIF flag bit when it is raised, we know that a character has
been received and is sitting in the RCREG register. We copy the RCREG con-
tents to a safe place in some other register or memory before it is lost.

5. After the RCREG contents are read (copicd) into a safe place, the RCIF flag
bit is forced to 0 by the UART itself. This allows the next received character
byte to be placed in RCREG, and also prevents the same byte from being
picked up multiple times.

From the above discussion we conclude that by checking the RCIFI flag bit
we know whether or not the PIC18 has received a character byte. If we fail to copy
RCREG into a safe place, we risk the loss of the received byte. More importantly,
note that the RCIF flag bit is raised by the PIC18, and it is also cleared by the CPU
when the data in the RCREG is picked up. Note also that if we copy RCREG into
a safe place before the RCIF flag bit is raised, we risk copying garbage. The RCIF
flag bit can be checked by the instruction “BTFSS PIRi, RCIF” or by usingan
interrupt, as we will see in Chapter 11.

uadrupiing the baud rate in the PiC18

i
.

higher-frequency crystal.
in the TYSTA

Tnit
na 1ge aoitinine 1tASIATLE ng . a

(]
¢
T m
3

Option 1 is not feasible in many situations because the system crystal is
fixed. Thercfore, we will explore option 2. There is a sof’tware way to quadruple

with the BRGH bit of the TXSTA register. When the PIC18 is powered up, D2
(BRGH bit) of the TXSTA register is zero. We can set it to high by software and
thereby quadruple the baud rate

To see how the baud rate is quadrupled with this method, we show the
role of the BRGH bit (D2 bit of the TXSTA register), which can be 0 or 1. We
discuss each case.

Baud rates for BRGH =0

When BRGH = 0, the PIC18 divides Fosc/4 (crystal frequency) by 16 once
more and uses that frequency for UART to set the baud rate. In the case of XTAL
= 10 MHz we have:

Instruction cycle freg. = 10 MHz / 4 = 2.5 kHz
and
2.5 MHz / 16 = 156,250 Hz because BRGH = 0

This is the frequency used by UART to set the baud rate. This has been the
basis of all the examples so far because it is the default when the PIC18 is pow-
ered up. The baud rate for BRGH = 0 was listed in Table 10-4 and Table 10-5.

Baud rates for BRGH = 1

With the fixed crystal frequency, we can quadruple the baud rate by mak-
ing BRGH = 1. When the BRGH bit (D2 of the TXSTA register) is sct ta 1, Fosc/4
of XTAL is divided by 4 (instead of 16) once more, and that is the frequency used
by UART to set the baud rate. In the case of XTAL = 10 MHz, we have:

Instruction cycle freq. = 10 MHz / 4 = 2.5 MHz

and
2.5 MHz / 4 = 625000 Hz because BHRG = 1
This is the frequency used by UART to set the baud rate if BHRH = 1.

Table 10-8 shows that the values loaded into SPBREG are the same for
both cases; however, the baud rates are quadrupled when BRGH = 1. Look at
Examples 10-5 through 10-7 to clarify the data given in Tables 10-6 and 10-7.

Table 10-6: SPBRG Values for Various Baud Rates (I'osc = 10MHz and
BRGH =1)

Baud Rate SPBRG (Decimal Value) SPBRG (Hex Value)

57600 10 0A
38400 15 OF
19200 32 20
9600 64 40
4800 129 g1

Note. For Fosc = 10 MHz we have SPBRG = (625000/Baud Rate) — |

Find the SPBRG value (in both decimal and hex) to set the baud rate to each of the follow-
ing:

(a) 9600 if BRGH = 1 (b) 4800 if BRGH =1

Assume that XTAL = 10 MHz.

Solution:

With XTAL = 10 MHz, Fosc/4 = 2.5 MHz. Because BRGH = 1, we have UART fre-
quency = 2.5 MHz/4 = 625,000 Hz.

(a) (625,500 / 9600) — 1 = 64; therefore, SPBRG = 64 or SPBRG = 40H (in hex).

{b) (625,500 / 4800) — 1 = 129; theretore, SPBRG = 129 or SPBRG = 81H (in hex).

- BRGH =1
+4 |625000Hz ;F}O -
Instruct. cycle freq. = UA
XTAL — =4 ud - to set
oscillator 2.5 MHz 156250 Hz baud
+ 16 ™ rate

BRGH =0

Dn A -
2auid 1

In calculating the baud rate we have used the integer number for the
SPBRG register values because PIC microcontrollers can only use integer values.
By dropping the decimal portion of the calculated values we run the risk of intro-

ducing error into the baud rate. There are several ways to calculate this error. One
way would be to use the foliowing formula.

For example, with the XTAL = 10 MHz and BRGH = 0 we have the fol-

lowing for the 9600 baud rate:
SPBRG value = (156250/9600) - 1=16.27 - 1 =1527 =15
and the error is
(15.27 - 15)/16 = 1.7%

Another way to calculate the the error rate is as follows:

Error = (calculated baud rate — desired baud rate) / desired baud rate

Solution:

(a) SPBRG Value = (156250/2400) — 1 =65.1 — 1 =64.1 = 64
Error = (64.1 — 64)/ 65 = 0.15%

(b) SPBRG Value (156250/1200) - 1=130.2-1=129.2=129
Error = (129.2 — 129)/130=0.15%

{c)} SPBRG Value (156250/19200) — 1 = 8.138 -1 =7.138=7
Error =(7.138 = 7)/8 = 1.7%

(d) SPBRG Value (156250/57600)-1=271-1=1.71=1
Error = (1.71 — 1y/2 = 35%

Such an error rate 1s too high. Let’s round up the number to see what happens.
Error = (3 — 2.7)/3 = 10% This means we use SPBRG = 2 instead of SPBRG = 1.

ADC programming in PIC18:-
PIC18F452/458 ADC features programming

The ADC peripheral of the PIC18 has the following characteristics:

(a) It is a 10-bit ADC.

(b) It can have 5 to 15 channels of analog input channels, depending on the
family member. In PIC18452/458, pins RAO-RA7 of PORTA are used for the 8
analog channels. See Figures 13-5A and 13-5B.

(¢) The converted output binary data is held by two spccial function regis-
ters called ADRESL (A/D Result Low) and ADRESH (A/D Result High).

(d) Because the ADRESH:ADRESL registers give us 16 bits and the ADC
data.out is only 10 bits wide, 6 bits of the 16 are unused. We have the option of
making either the upper 6 bits or the lowcr 6 bits unused.

o (e) We have the option of using Vdd (Vcc), the voltage source of the PIC18
chip itself, as the Vref or connccting it to an external voltage source for the Vref.

() The conversion time is dictated by the Fosc of crystal frequency con-
nected to the OSCs pins. While the Fosc for PIC18 can be as high as 40 MHz, the
conversion time can not be shorter than 1.6 ms. ,

(2) It allows the implementation of the differential Vref voltage using the
Vref(+) and Vref(—) pins, where Vref = Vref (+) - Vref (-).

Mal.ly of the above features can be programmed by way of ADCONO (A/D
control register 0) and ADCONI (A/D control register 1), as we will scc next.

ADCONO register

The ADCONO register is used to set the conversion time and select the ana-
log input channel among other things. Figure 13-6 shows the ADCONO register. In
order to reduce the power consumption of the PIC18, the ADC feature is turned
off when the microcontroller is powered up. We turn on the ADC with the ADON
bit of the ADCONU register, as shown in Figure 13-6. The other important bit is
the GO/DONE bit. We use this bit to start conversion and monitor it to see if con-
version has endcd. Notice in ADCCONO that not all family members have all the
8 analog input channels. The conversion time is set with the ADCS bits. While
ADCSI1 and ADCSO are held by the ADCONO register, ADCS2 is part of the
ADCONT1 register. This is discussed next.

ADCS1 | ADCSO | CHS2 | CHSI1 | CHSO | GO/DONE| - | ADON

ADCS2 (from ADCON1) ADCS1 ADCS0 Conversion Clock Source
0 0 0 Fosc/2

0 0 1 Fosc/8&

0 1 0 Fosc/32

0 1 1 Internal RC used for clock source
1 0 0 Fosc/4

1 0 1 Fosc/16

1 1 0 Fosc/64

1 1 1 Internal RC used for clock source
CHS2 CHS1 CHSO CHANNEL SELECTION

0 0 0 CHANO (ANO)

0 0 1 CHANI1 (AN1)

0 1 0 CHAN2 (AN2)

0 1 1 CHAN3 (AN3)

1 0 0 CHAN4 (AN4)

| 0 1 CHANS (ANS) not implemented on 28-pin PIC18

| | 0 CHANG6 (AN6) not implemented on 28-pin PIC18

1 1 1 CHAN7 (AN7) not implemented on 28-pin PIC18

GO/DONE A/D conversion status bit.

1 = A/D conversion is in progress. This is used as start conversion, which
means after the conversion is complete, it will go LOW to indicate the end-
of-conversion.

0 = A/D conversion is complete and digital data is available in registers

ADRESH and ADRESL.

ADON A/D on bit

0 = A/D part of the PIC18 is off and consumes no power. This is the default
and we should leave it off for applications in which ADC is not uscd.

1 = A/D feature is powered up.

Figure 13-6. ADCONG (A/D Control Register 0)

ADCON1 register

Another major register of the PIC18’s ADC feature is ADCON!, The
ADCONI register is used to select the Vref voltage among other things. It is
shown in Figure 13-7. After the A/D conversion is complete, the result sits in reg-
isters ADRESL (A/D Result Low Byte) and ADRESH (A/D Result High Byte).
The ADFM bit of the ADCONI is used for making it right-justified or left-justi-
fied because we need only 10 bits of the 16. See Figure 13-8.

ADFM

ADCS2

PCFG3

PCF(2

PCFGI

PCFGO

0000
0001
0010
0011
0100
0101
01 [x
1000
1001
1010
1011
1100
1101
1110
1111

vlvivivivEvlvitdwlvBelwllelgh

wivivivEvEvivE devlvivlvivRds
UUUU>>>>CUUUU>>

PCFGs AN7 AN6 AN5 AN4

i == =R

A
A
D
D
D

ADFM A/D Result format sclcet bit
1 = Right justified: The 10-bit result is in the ADRESL register and the lower
2 bits of ADRESH. That means the 6 most significant bits of the ADRESH
register arc all 0s.
0 = Left justified: The 10-bit result is in the ADRESL register and the upper 2
bits of ADRESL. That means the 6 least significant bits of the ADRESL
register are all Os.

AN3
A
Vref+
A
Vret+
A
Vref+
D
Vref+
A
Vref+
Vref+
Vref+
Vref+
D
Vrel+

A = Analog input, D = Digital [/O
C/R = # of analog input channels / # ol pins used for A/D voltage reference

The default 1s option 0000, which gives us 8 channels of analog input and uses the
Vdd of PIC18 as Vref.

PCFGs: A/D Port Configuration Control bits:

AN2 AN1 ANG Vref+ Vref-

A A

A
A
A
D
D

>>>>>>>>U>>>>>>

Vdd Vss
AN3 Vss
Vdd Vss
AN3 Vss
Vdd Vss
AN3 Vss
AN3 AN2
Vdd Vss
AN3 Vss
AN3 AN2
AN3 AN2
AN3 AN2
Vdd Vss
AN3 AN2

ADCS2 A/D Clock Select bit 2. This bit along with the ADCS1 and ADCSO bits of
the ADCONQ register decide the conversion clock for the ADC. The default value for
ADCSZ2 is 0, which means setting the ADCS0 and ADCS1 values of ADCONO can
give us clock conversion of Fosc/2, Fosc/8, and Fosc/32. See the ADCONO register.

C/R
8/0
771
5/0
4/1
3/0
2/1
0/0
6/2
6/0
5/1
472
3/2
2/2
1/0
172

Figure 13-7. ADCON1 (A/D Control Register 1)

ADRESH ADRESL

Left-Justified
ADFM =0 9 2 10 UNUSED

ADFM = 1 UNUSED g 8 7 0
Right-Justified

Figure 13-8. ADFM Bit and ADRESx Registers

For a PIC18-based system, we have V += Vdd = 5 V. Find (a) the step size, and (b) the

ADCON] value if we need 3 channels, Assume that the ADRESH:ADRESL registers
are right justified.

Solution:

(a) The step size is 5/1,024 = 4.8 mV.
(b) ADCONT1 = 1x000100 because option 100 gives us 3 analog input channels. The x
= ADCS?2 is decided by the conversion speed.

For a PIC18-based system, we have V¢ = 2.56 V. Find (a) the step size, and (b) the

ADCONI! value if we need 3 channels. Assume that the ADRESH:ADRESL registers
are right justified.

Solution:

(a) The step size is 2.56/1,024 = 2.5 mV.
(b) ADCONI1 = 1x000011 because option 0011 gives us 3 analog input channels where

x = ADCS?2 is decided by the conversion speed.

Calculating A/D conversion time

By using the ADCS (A/D clock source) bits of both the ADCONO and
ADCONI registers we can set the A/D conversion time. The conversion time is
defined in terms of Tad, where Tad is the conversion time per bit. To calculate the
Tad, we can select a conversion clock source of Fosc/2, Fosc/4, Fosc/8, Fosc/16,
Fosc/32, or Fosc/64, where Fosc is the speed of the crystal frequency connected to
the PIC18 chip. For the PIC18, the conversion time is 12 times the Tad. Notice that
the Tad cannot be faster than 1.6 ms. Look at Examples 13-4 and 13-5 for clarifi-
cation.

We can also use the the internal RC oscillator for the conversion clock
source, instead of the Fosc of the external crystal oscillator. In that case the Tad is
typically 4-6 us and conversion time is 12 X 6 us = 72 ps.

Another timing factor that we must pay attention to is the acquisition time
(Tacq). After an A/D channel 1s selected, we must aliow some time for the sample
-and-hold capacitor (C hold) to charge fully to the input voltage level present at the
channel. It 1s only after the elapsing of this acquisition time that the A/D conver-
sion can be started. Although many factors (e.g., Vdd and temperature) affect the
duration of Tacq, we can use a typical value of 15 ps. In some newer generations
of the PIC18, we have the option of controlling the exact time of Tacq by pro-
gramming the internal register ADCON2. In the PIC18F452/458, we have only the
ADCONO and ADCON!/ registers. See Example 13-6.

A PIC18 is connected to thc 10 MHz crystal oscillator. Calculate the conversion time
for all options of ADCS bits in both the ADCONO and ADCON1 registers.

Solution:

The options for the conversion clock source for both ADCONO and ADCON]1 are as fol-
lows:

{a) For Fose/2, we have 10 MHz /2 = 5 MHz.

Tad =1/5 MHz = 200 ns. Invalid because it is faster than 1.6 ps.

(b) For Fosc/4, we have 10 MHz /4 =2.5 MHz.

Tad =1/ 2.5 MHz = 400 ns. Invalid because it is faster than 1.6 us.

(¢) For Fosc/8, we have 10 MHz /8 = 1.25 MHz.

Tad = 1/ 2.5 MHz = 800 ns. Invalid because it is faster than 1.6 ps.

(d) For Fosc/16, we have 10 MHz / 16 = 625 kHz.

Tad =1 / 625 kHz = 1.6 ps. The conversion time = 12 X 1.6 us = 19.2 ps

(¢) For Fosc/32, we have 10 MHz /32 =312.5 kHz.

Tad =1/312.5 kHz = 3.2 ps. The conversion time = 12 X 3.2 ps = 38 4 us

(f) For Fosc/64, we have 10 MHz / 64 = 156.25 kHz.

Tad =1/ 156.25 kHz = 6.4 ps. The conversion time = 12 X 6.4 ps = 76.8 us

Notice that for the Fosc/4, Fosc/16, and Fosc/64 selections, we must use the ADSC2 bit
in the ADCONI1 register, in addition to the ADCS bits in the ADCONO register.

A PIC18 is connected to the 4 MHz crystal oscillator. Calculate the conversion time if
we want to use only the ADCS bits of the ADCONG register.

Solution:

The options for the conversion clock source available in the ADCONO register are as
follows:

(a) For Fosc/2, we have 4 MHz /2 =2 MHz,

Tad = 1/ 2 MHz = 400 ns. Invalid because it is faster than 1.6 us.

(b) For Fosc/8, we have 4 MHz / 8 = 500 kHz.

Tad =1/ 500 kHz = 2 ps. The conversion time = 12 x 2 us =24 us

(c) For Fosc/32, we have 4 MHz / 32 = 125 kHz.

Tad = 1/ 125 kHz = 8 ps. The conversion time = 12 x 8 ps =96 us

Find the values for the ADCONO and ADCONI| registers for the following options: (a)
channel ANO as analog input, (b) Vref+ = Vdd, Vref- = Vss, (¢) Fosc/64, (d) A/D result
is right justified, and (e) A/D module is on.

Solution:

From Figure 13-6, we have ADCONO = 10000x1. With x = 0 we have 10000001.
From Figure 13-7, we have ADCON1 = 11xx1110. With x = 0 we have 11001110.

Steps in programming the A/D converter using polling

To program the A/D converter of the PIC18, the following steps must be
taken:

1. Turn on the ADC module of the PIC18 because it is disabled upon power-on
reset to save power. We can use the “BSF ADCONO, ADON” instruction.

2. Make the pin for the selected ADC channel an input pin. We use “BSF
TRISA,x.” or “BSF TRISE,x” where X is the channel number.

3. Select voltage reference and A/C input channels. We use registers ADCONO

and ADCONI.

Select the conversion speed. We use registcrs ADCONO and ADCONI.

Wait for the required acquisition time.

Activate the start conversion bit of GO/DONE.

Wait for the conversion to be completed by polling the end-of-conversion

(GO/DONE) bil.

After the GO/DONE bit has gone LOW, rcad the ADRESL and ADRESH reg-

isters to get the digital data output.

9. Go back to step 3.

P Pk

o

Programming PIC18F458 ADC

Program 13-1:

This program gets data from channel 0

(RAO)

of ADC and displays the result on PORTC and PORTD. Thig is
done every quarter of second.
i Program 13-1

ORG 0000H
CLRF TRISC ;make PORTC an output
CLRF TRISD ;make PORTD an output
BSF TRISA,C ;make RAO0 an input for analog input
MCOVLW 0x81 ;Fosc/64, channel 0, A/D is on
MOVWEF ADCONOQ
MOVLW OxCE ;right justified, Fosc/64, ANO = analog
MOVWF ADCON1

OVER CALL DELAY ;wait for Tacg (sample and hold time)
BSF ADCONO, GO ;start conversion

BACK BTFSC ADCONO, DONE ;keep polling end-of-conversion
BRA BACK ;wait for end of convergion
MOVFF ADRESL, PORTC ;give the low byte to PORTC
MOVFF ADRESH, PORTD ;give the high byte to PORTD
CALL QRSEC DELAY
BRA QOVER ikeep repeating it
END

PIC18F
] PORTC |
10k
POT | RAO/ANO
PORTD |

Figure 13-9. A/D Connection for Program 13-1

tying down the microcontroller. To program the A/D using the interrupt method,
we need to set HIGH the ADIE (A/D interrupt enable) flag. If ADIE = 1, then upon
the completion of the conversion, the ADIF (A/D interrupt flag) becomes HIGH,
which will force the CPU to jump to read binary outputs. Table 13-4 shows to
which registers these two flags belong.

Table 13-4: A/D Converter Interrupt Flag Bits and their Registers

Interrupt Flag bit Register Enable bit Register
ADIF (ADC) ADIF PIRI ADIE PIE]

; Program 13-2
ORG COQ0H

GOTO MAIN ;bypass interrupt vector table
;—-on default all interrupts go to to address 00008

ORG 0008H ;interrupt vector table

BTFSS PIR1,ADIF ;Did we get here due to A/D int?

RETFIE ;iNo. Then return to main

GOTC AD ISR ;Yes. Then go INTO ISR

;—the main program for initialization
ORG C0100H

MAIN CLRF TRISC ;make PORTC an output
CLRF TRISD ;make PORTD an output
BSF TRISA,O0 ;make RAO an input pin for analog input
MOVLW 0x81 ;Fosc/64, channel 0, A/D is on

MOVWEF ADCONO

MOVLW OxXCE ;right justified, Fosc/64, ANO = analog
MOVWEF ADCON1

BCF PIR1,ADIF ;clear ADIF for the first round
BSF PIE1l,ADIE ;enable A/D interrupt

BSF INTCON, PEIE ;enable peripheral interrupts

BSF INTCON,GIE ;enable interrupts globally

OVER CALL DELAY ;wait for Tacq (sample and hold time)
BSF ADCONO,GO ;start conversion
BRA OVER ;stay in this loop forever

j----- A/D Converter ISR

AD ISR
ORG 200H
MOVFF ADRESL, PORTC ;give the low byte to PORTC
MOVFF ADRESH, PORTD ;give the high byte to PORTD
CALL QS3SEC_DELAY
BCF PIR1,ADIF ;clear ADIF interrupt flag bit
RETFIE

END

