"ज्ञान, विज्ञान आणि सुसंस्कार यासाठी शिक्षण प्रसार"

शिक्षणमहर्षी- डॉ बापूजी साळुंखे . Shri Swami Vivekanand Shikshan Sanstha's Dattajirao Kadam Arts, Science & Commerce College, Ichalkaranji

DEPARTMENT OF PHYSICS

QUESTION BANK

B.Sc. Part-II, Semester-IV, PHYSICS Paper-VII

DSC-D1 THERMAL PHYSICS AND STATISTICAL MECHANICS – II

***** Multiple Choice Questions

1	in	Joule-Thomson	effect, remains c	onstant during			
throttling process.							
a) Pressure	b) Temperature	c) Volume	d) Enthalpy				
2. The temperature of inversion for hydrogen at about 100 atm. pressure is							
a) 80 K	b) 193 K	c) 35 K	d) 100 K				
3. The temperatu	3. The temperature of inversion for Helium is						
a) 80 K	b) 193 K	c) 35 K	d) 100 K				
4. For perfectly black body coefficient of absorption is							
a) zero	b) one	c) 0.5	d) infinite				
5. In a black body radiation spectrum, as temperature increases, maximum energy shiftstowards.							
b) longer wavelength side b) shorter wavelength side							
c) first shifts towards shorter wavelength side and then shifts towards longer wavelengthside							
d) first shifts towa	ards longer waveleng	gth side and then s	hifts towards shorter	wavelength side			
6. Wein's distrib region	ution law explains th	e black body radia	ation spectrum in	wavelength			
a) shorter	b) Longer	c) entire	d) middle				
7. According to Stefan's law, the energy radiated per second per unit area by a perfectly							

blackbody at temp	erature T ⁰ K is prop	ortional to					
a) <i>T</i>	b) <i>T</i> ²	c) T^{3}	d) <i>T</i> ⁴				
8. S.I. unit of Stefan'	s constant σ is						
a) $W m^{-2} K^4$	b) m K	c) $W m^{-2} K^{-4}$	d) $W m^2 K^4$				
9. S.I. unit of Wien's	constant 1s						
a) $W K^4$	b) m / K	c) $W m^{-2}$	d) <i>m K</i>				
10. The ratio of rates of	of emission of heat b	y black body at 527 °	°C and at 127 °C will be				
a) 4:1	b) 1:1	c) 16:1	d) 2:1				
11. The Stirling formu	la is						
c) $ln n! = n ln n - n$	b) $ln n! = n ln$	n c) $ln n! = n ln$	n+n d) $ln n! = n-n ln n$				
12. If, W , M and G a	are respective total	probability, thermod	ynamic probability and a				
prioryprobability of	of any thermodynam	ic distribution then					
a) $W = M + G$	b) $W = M \times d$	G c) W = M/G	d) $W = G/M$				
13. Bose-Einstein stati	stics is applicable to)					
a) Gas molecules	b) photons	c) electrons	d) protons				
14. Fermi-Dirac statist	tics is applicable to -						
a) Gas molecules	b) photons	c) electrons	d) helium atoms				
15. Bose-Einstein stati	stics is applicable to)					
a) distinguishable p	articles b) indi	stinguishable particle	s having integral spin				
c) indistinguishable p	particles having half	spin d) distinguis	hable particles of any spin				
16. Fermi-Dirac statist	tics is applicable to -						
a) distinguishable p	articles						
b) indistinguishable	b) indistinguishable particles having integral spin						
c) indistinguishable	particles having hal	f spin					
d) distinguishable par	rticles of any spin						
13. The energy distribution	on in black body rad	liation spectrum can l	be explained by				
a) M-B statistics b)) F-D statistics	c) B-E statistics	d) F-E statistics				
14. Bosons are particles v	with spin	l					
a) half b)) zero or integral	c) any	d) negative				
15. Electrons are							
a) Bosons b)) Fermions	c) Photons	d) phonons				

a) 4	b) 6	c) 9	d) 3				
17. In how many distinct ways 2 indistinguishable particles obeying exclusion principle, will be							
arranged	in 3 different shells?						
a) 4	b) 6	c) 9	d) 3				
18. Thermodynamic probability of arrangement of 4 distinguishable particles in 2 different							
shells is-							
a) 4	b) 6	c) 16	d) 20				
19. Consider a distribution of 4 distinguishable particles in 2 different shells. The number of							
microstates corresponding to macrostate (2, 2) will be							
a) 1	b) 4	c) 6	d) 8				
20. The phase space is combination ofspace.							
a) Posit	ion and momentum	b) position and me	oment				
c) moment and velocity		d) moment and momentum					
21. The volume of a cell in phase space is							
d) <i>ħ</i>	b) \hbar^2	c) \hbar^3	d) \hbar^4				

16. In how many distinct ways 2 distinguishable particles will be arranged in 3 different shells?

Long Answer Questions

1. Derive Maxwell's thermodynamic relations.

2. What is Joule-Thomson effect? Derive an expression for change in temperature of gasduring throttling process.

- 3. Using thermo dynamical relations, prove that for ideal gas Cp Cv = R.
- 4. What is black body radiation? Explain black body radiation spectrum.
- 5. Derive an expression for energy density of radiation inside the closed enclosure.
- 6. Derive Planck's radiation law in terms of frequency.
- 7. What is phase space? Explain microstates and macrostates with example.
- 8. Derive Maxwell- Boltzmann distribution law.

9. Using Maxwell- Boltzmann law of distribution of velocities, obtain expressions for most probable speed and r.m.s. speed of gas molecules.

10. Using Maxwell- Boltzmann law of distribution of velocities, obtain expressions for most probable speed and average speed of gas molecules.

- 11. Obtain an expression for Bose-Einstein distribution law.
- 12. Derive Fermi-Dirac distribution law.

13. Give distinguishing points between Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics.

Short Answer Questions

- 1. State and explain thermodynamic potentials, 1. Internal energy and 2. Enthalpy.
- 2. State and explain thermodynamic potentials, 1. Helmholtz function and 2. Gibb's function.
- 3. What is the temperature of inversion? Why hydrogen and helium shows heating effect at NTP?
- 4. Derive Clausius- Clapeyron's equation from Maxwell's thermodynamical relations.
- 5. Using Maxwell's thermodynamic relations obtain an expression for ratio of specific heat.
- 6. Derive first and second TdS equations.
- 7. Derive Maxwell's thermodynamic relations using thermodynamic potentials i) internal energy U and b) Enthalpy H.
- 8. What is a black body? Give its importance.
- 9. Explain Ferry's black body.

10. What is Joule-Thomson effect? Show that enthalpy remains constant during throttling process

- 11. Obtain an expression for the energy density of radiation inside the close enclosure.
- 12. Derive Wien's displacement law from Plank's radiation law.
- 13. Derive Rayleigh- Jean's law from Plank's radiation law.
- 14. Derive Wien's distribution law from Plank's radiation law.
- 15. Derive Stefan Boltzmann law from Planck's radiation law.
- 16. Explain black body radiation spectrum.
- 17. Write a note on Phase Space
- 18. Explain with example macrostates and microstates.
- 19. Explain a priori probability and thermodynamic probability.
- 20. Write a note on 'Most probable distribution'

21. Using Maxwell-Boltzmann distribution law, obtain an expression for most probable speed of gas molecules.

22. Using Maxwell-Boltzmann distribution law, obtain an expression for average speed of gas molecules.

23. Using Maxwell-Boltzmann distribution law, obtain an expression for r.m.s. speed of gas molecules.

24. Show that entropy (S) of a system is given by $S = k \ln W$, where W is probability of a state of the system.

- 25. Derive an expression for Bose-Einstein distribution law.
- 26. Derive an expression for Fermi-Dirac distribution law.
- 27. Distinguish between MB, BE statistics.
- 28. Distinguish between MB, FD statistics.
- 29. Derive an expression for Planck's radiation law.
- 30. Calculate the most probable speed, average speed, and rms speed of oxygen at room temperature (m = $2 \times 16 \times 1.67 \times 10-27$ gm, k= $1.38 \times 10-23$ J/k, T=270 C).
- 31. Explain the terms macrostates, microstates and accessible microstates.