"ज्ञान, विज्ञान आणि सुसंस्कार यासाठी शिक्षण प्रसार"

शिक्षणमहर्षी- डॉ बापूजी साळुंखे. Shri Swami Vivekanand Shikshan Sanstha's Dattajirao Kadam Arts, Science & Commerce College, Ichalkaranji

DEPARTMENT OF PHYSICS

QUESTION BANK

B.Sc. Part-III, Semester-VI, PHYSICS Paper-XVI

DSE-F4 Energy Studies and Materials Science

***** Multiple Choice Questions

Unit-I: Chapter-1: Energy and Wind Energy

Question	Option a	Option b	Option c	Option d
The capacity to do work	Motion	Power	Energy	Force
is				
is non-conventional	Coal	Oil	Natural gas	Wind energy
source of energy				
Which of the following is	Sun	electrical	Wind	Coal
secondary source of energy ?				
Which of the following is not	Watt	Joule	Watt-sec	KWh
a unit of energy ?				
is the proper energy	Primary-	Primary-	Secondary-	Intermediate-
chain	intermediate-	secondary-	primary-	secondary-
	secondary	intermediate	intermediate	primary
Wind energy is a	Heat energy	Geothermal	Solar energy	Mechanical
manifestation of		energy		
Wind farm is	Farm where	Wind is used	Grinding mills	A large number of
	wind flows	for agricultural	operate on	wind turbine
	heavily	work	wind power	electrical
				generator units
				are installed
India's potential for	Negligible	50 MW	2000 MW	100 kW
electrical power from wind				
power				
S. I. Unit of wind	J/m^2	W/m ²	W/cm ²	Kw/m ²
If V_i , V_r and V_w are	$V_i > V_r > V_w$	$V_{\rm w} > V_{\rm r} > V_{\rm i}$	$V_r > V_w > V_i$	$V_{\rm w} > V_{\rm i} > V_{\rm r}$
respectively the wind				

velocities at the inlet, at the				
rotor and exit sides of a				
horizontal axis type wind-				
turbine then				
If V_i is the incoming wind	$P_{max} \alpha V_i^2$	$P_{max} \alpha V_i^3$	$P_{max} \alpha V_i$	$\mathbf{D} = \sqrt{\mathbf{U}}$
velocity for a horizontal axis	\mathbf{I} max \mathbf{w} , \mathbf{r}	$1 max or r_1$	\mathbf{I} max $\mathbf{x} \neq \mathbf{y}$	$P_{max} \alpha \sqrt{V_i}$
type wind-turbine then				
maximum power output of				
the turbine is				
For VAWT the rotating shaft	Vertical	Tilted	Horizontal	Inclined at 45
axis is	vertical	Thed	HOHZOIItai	with vertical
The axial induction factor of	1 and ∞	0 and 1	0 and ∞	1 and -1
	$1 \text{ and } \infty$	0 and 1	0 and ∞	1 and -1
wind turbine lies between	BTU	Calorie	Joule	All Above
What is unit of Energy?				
Which of the following is not	Wind	Biogas	Nuclear	All above
a renewable energy?				
If A the area swept by blades	Pw.A	Pw/A	(8/27) (PwA)	8/27). (Pw./A)
of wind turbine and Pw is the				
wind power density then the				
incident wind power is given				
by P =				
is used to adjust the plane	yaw control	pitch control	speed control	gear control
of blades normal to incoming				system
wind when the wind				
direction changes.				
In a HAWT generator unit,	close to the	in the nacelle	close to the	anywhere as per
the gearbox, generator,	ground inside		ground outside	site requirement
electronic control unit and	the tower		the tower	
yaw mechanism are				
kept				
Area under Po-H curve	Incident energy	energy output	wasted energy	all above
represents of				
wind turbine in 24 hours.				
resource has largest	Coal	Oil	Nuclear	Solar
contribution to electricity				
production.				
The winds resulting due to	planetary winds	local winds	easterly winds	Polar winds
unequal heating and cooling	- •			
of ground surface and water				
surface during the day and				
night is called				
The theoretical efficiency of	100	limited by	75	59.3
the wind mill is%		Carnot's		
		theorem		

The maximum power density	296.3	350.88	344.88	363.3
of a wind turbine is				
W/m^2. Given wind				
speed: 10 m/s and air				
density: 1 kg/m^3				
S.I. unit of energy is	J	erg	W	HP
The power of wind turbine is	V and A	V^2 and A^2	V^3 and A	inversely
proportional to				proportional to V
where V is speed of				and A
incoming wind and A is area				
swept by blades of wind				
turbine.				
Wind speed is measured in	Knots	m/s	km/hr	All above
Wind farm is	Site where wind	site used for	site where	site where number
	flows heavily	agricultural	wind turbines	of wind turbine
		work	are used to run	generator units
			grinding mills	are installed in
				large area
Find the maximum power	296.3	350.88	344.88	363.3
density of a wind turbine.				
Given wind speed: 10 m/s				
and air density: 1 kg/m ³ .				
Which of the following is a	space frame	wind mill type	bicycle wheel	Darrius wind
vertical axis wind turbine	rotor design	design	design	turbine
(VAWT)?				
Unit-1: chapter 2: Solar	Energy			
-				

Question	Option a	Option b	Option c	Option d
The solar radiation with wavelengths below 300 nm are absorbed by in the earth's atmosphere	water	Carbon dioxide	ozone	All above
The solar spectrum comprises of parts of the electromagnetic spectrum.	all	Only visible	Only UV	UV, Visible and IR
The amount of solar radiation (energy) received on a flat horizontal surface at a given place over a specified time is called—	Solar constant	solar insolation	clarity index	solar energy density
The clarity index varies between	0.1 and 0.7	0.1 and 5	1 and 2	1 and 1

Which of the following device is based on the photovoltaic principle?	Solar cell	solar water heater	LED	solar cooker
A solar PV panel has 100 modules and 50 cells in each module. If power of each solar cell is 0.2 W then power of the panel is	10 W	100 W	1 K W	2.5 KW
The major disadvantage of	It is a dilute	Available	available free	Emits polluting
solar energy is	source of energy	everywhere on the earth	of the cost	gases
energy is a clean and renewable source of energy	Solar	Thermal	Chemical	Electrical
The direct route of utilizing solar energy is	Biomass	Wind	Heating water	Tides
Clarity index has unit	W/m ²	W/m	No unit	J/m ²
Solar cell converts	Light energy into electrical energy	Chemical energy into electrical energy	Light energy into magnetic energy	Light energy into heat energy
Solar PV system panel	PV cells	Strings of PV	Series	Series and parallel
consists of		cells	arrangement of modules	arrangement of modules
In solar PV panel there are n solar cell in module, m number of modules in a panel and Pc power of single cell, then power of the PV panel is	nmP _c	nm/P _c	P _c /nm	(n+m)P _c
Solar energy is the source of energy.	Conventional	renewable	non-renewable	Commercial
Most of the solar energy in solar spectrum at sea level is present inregion	MW	IR	Visible	UV
Which of the following is the solar thermal device?	Solar Dryer	Solar hot water systems	Solar Cooker	All above
is not affected by the atmospheric conditions.	solar insolation	Solar constant	clarity index	Air mass ratio
The conversion of solar radiation in electricity in solar cells is known as effect.	Photoelectric	Raman	Compton effect	photovoltaic

The solar energy received	Solar constant	solar insolation	Clarity index	Energy quantum
per unit area per unit time				
normal to the direction of the				
sunrays at mean distance				
between earth and sun is				
A solar PV panel has m	m*n*P	(m+n)/P	(m*n)/P	m+n+P
modules and n cells in each				
module. If power of each				
solar cell is P then power of				
the panel is				
In satellite station solar	MW	IR	Visible	UV
energy plant, the solar				
energy from satellite is send				
to the ground station in the				
form of				
The value of solar constant is	1367	1167	1253	1377
W/m^2 .				
The absorption bands in the	carbon dioxide	water vapours	ozone	All above
solar spectrum at sea level				
are due to absorption of solar				
radiations by				
The solar constant is	Anywhere on	at sea level	outside the	in the earth's
measured	the earth's		earth's	atmosphere
	surface		atmosphere at	
			mean distance	
			between earth	
			and sun	
The clarity index depends	The place	time	conditions of	All above
upon			the	
			atmosphere	

Chapter-3: Biomass Energy

Question	Option a	Option b	Option c	Option d
Which one of the following	Green plants	Algae	Industry waste	All above
is a biomass resource?				
The process of anaerobic	Gasifier	Biogas plant	Fermenter	in open
digestion is carried out in				atmosphere
Which of the following	Pyrolysis	Incineration	Fermentation	Gasification
techniques is used to produce				
alcohol?				
What is the product of the	Methane	carbon	butane	None of above
anaerobic digestion?				

Which of the following	Pyrolysis	Incineration	Fermentation	Gasification
biomass energy conversion				
process is biochemical?				
The concept of harnessing	wind farm	energy farms	social	all above
biomass from from			plantation	
cultivated crops is known as			_	
Which of the following is	Nuclear	Biogas	Coal	Oil
renewable energy source?				
is the cause of origin	Photosynthesis	Fermentation	Oxidation	Deoxidation
of biomass energy				
Photosynthesis takes	Only in green	In any plant	Even in dry	In any living
place	plants		wood	organism
Algae is a kind of	Tree	Pack of small	Microorganis	Chemical
		plants	m	
Algae in the presence of	Methane	carbon dioxide	Biomass	Ethanol
sunlight and organic waste				
forms				
Biogas isgas	Methane	Propane	Butane	Ethane
not included in the	Vegetables	Forest waste	Agricultural	Fossil fuels
category of biomass			waste	
Which of the following is	Pyrolysis	Incineration	Fermentation	Gasification
biochemical conversion				
process of biomass				
conversion?				
Which of the following is not	Digester	Gas holder	Pyrolysis	Distribution line
part of Biogas plants?	-		reactor	
A process of decomposition	Pyrolysis	Fermentation	Anaerobic	incineration
of organic matter by	-		digestion	
microorganisms is called				
-			1	

Unit-2 Chapter-1: Superconductivity

Question	Option a	Option b	Option c	Option d
Soft Superconductor				
observes	Meissner effect	Silsbee's Rule	Both a & b	None Of these
			High critical	
			field and	
Hard superconductor	Breakdown of	Incomplete	transition	
observes	silsbee's rule	Meissner Effect	temperature	All of these
The temperature at which a				
conductor becomes	Superconducting	Curie	Onne's	Transition
superconductor is called	temperature	Temperature	Temperature	Temperature
The critical temperature of	233 оК	4.2 oK	34 oK	90 oK

mercury is				
The type-I superconductors				
are completely	Diamagnetic	Ferromagnetic	Paramagnetic	Antiferromagnetic
			Attract the	
			magnetic field	
	Attract the	Repel all the	but transfer it	
The superconducting	magnetic field	magnetic lines	into a	
material when placed in	towards its	of force passing	concentrated	Not influence the
magnetic field will	centre	through it	zone	magnetic field
Superconductor is also called	Perfect			
as a	Conductor	Bad conductor	Phonon	Semiconductor
	Its electrical	Its thermal	Its electrical	
The normal conductor	conductivity	conductivity	resistance	
becomes superconductor	becomes equal	becomes equal	becomes equal	
when	to zero	to zero	to zero	it melt
As temperature decreases,				
the vibration of ions in a				
crystal	decreases	Increases	remains same	None Of these
Resistivity of the metal				
decreases as collision time				
't'	increases	Decreases	remains same	None Of these
Resistivity of the metal				
decreases as				
temperature	increases	Decreases	remains same	None of these
According to Onnes, the				
superconducting transition				
is	Reversible	Irreversible	Both a & b	None Of these
Critical magnetic field is				
found to be a function				
of	Collision time	Temperature	Resistance	None of these
For type-I superconductor				
the magnitude of Hc is				
alwaysfor useful				
technical application in coils				
for superconducting magnets	Too Low	High	Too high	None Of these
The magnetisation in type-II				
superconductor				
gradually with increase of				
applied magnetic field.	increases	Decreases	Both a & b	remains same
			all electrons	all electrons
	zero atomic	infinite atomic	having	interacting in the,
Superconductivity result	vibration of	vibration of	possessed	superconducting
basically due to	crystal structute	crystal structure	fermi energy	state
Superconductors are	Perfect	Perfect	Perfect	Perfect

	forromagnata	paramagnata	diamagnata	forrimognoto
	ferromagnets	paramagnets	diamagnets	ferrimagnets
			Zero	
The essential properties of			resistivity and	
superconducting materials	Only zero	Only perfect	perfect	
are	resistivity	diamagnetism	diamagnetism	None of the above
The critical temperature of a				
superconductor varies with				
its isotopic mass M				
as	Tc α M-1/2	Tc α M1/2	Tc α M-1/4	Tc α M1/4
The magnetic lines of force				
cannot penetrate the body of				
a superconductor, this				
phenomenon is known			Meissner	
as	Isotopic effect	London's effect	effect	BCS Theory
The phenomenon of	_			
superconductor was first		Kamerlingh		
discovered by	London	Onnes	Bardeen	Cooper
At critical temperature T_c ,				
the critical magnetic field				
becomes	Infinite	Twice the field	Zero	Negative
The magnetic field at which				
superconductivity vanishes is	Critical	Superconductin		
called as	magnetic field	g field	Surface field	Induced field
The susceptibility of		8		
superconductor is χ				
=	0	1	-1	354
Unit-2 chapter-2 nanoted		_	_	
Question	Option a	Option b	Option c	Option d
Question	Option u		Spanish	Option u
			word	
The prefix "nano" comes	French word	Greek word	meaning	Latin word meaning
from a	meaning billion	meaning dwarf	particle	invisible
Who first used the term	Richard	Norio	Eric Drexler,	IIIVISIDIC
nanotechnology and when?			1986	Sumio Lijima 1001
Richard Feynman is often	Feynman, 1959	Taniguchi, 1974	1980	Sumio Iijima, 1991
credited with predicting the				
potential of nanotechnology. What was the title of his	Thora is a time	hings act	Bottom?	
	There is a tiny	hings get		Thora is planty of
famous speech given on	room at the	nanoscopic at	What	There is plenty of
December 29, 1959?	bottom	the bottom	bottom?	room at the bottom
$10 \text{ nm} = \dots \dots \text{m.}$	10^(-7)	10^(-8)	10^(-9)	10^(-10)
Nanowires are an example of	3 D	2 D	1 D	0 D
nanostructures.			Ŧ	
The nucleation and growth of	LaMer diagram	Ostwald	Larmor	None of above

the nanoparticles can be		diagram	diagram	
depicted by				
Spintronics is the study of	only charge of	only intrinsic	intrinsic spin	None of above
	electron	spin of the	in addition	
		elctron	to charge of	
			electron	
A quantum dot	is a 0D	is confined in	exhibits	All above
	nanostructure	all three	discrete	
		dimensions	quantized	
			energy	
			levels	
Following is an example of	photolithograph	sputtering	nucleation	sol-gel
top-down approach for the	У		and growth	
synthesis of nanostructured				
materials				
"There is a plenty of room at	Enrico Fermi	Albert Einstein	Richard	Wolfgang Pauli
the bottom" was a lecture			Feynman	
given by in 1959				
1 nm = m.	10^{-10} m	10 ⁻⁹ m	10 ⁻⁷ m	10 ⁻⁶ m
Quantum dots is example of	0 D	1 D	2 D	3 D
nanostructures.				
If the size of nanoparticles is	increases	decreases	remains	None of above
decreased, its surface to			same	
volume ratio				
Which of the following is	Nanotube	quantum dots	thin films	nanoshell
two-dimensional		1		
nanostructure ?				
Which of the following	It utilizes the	GMR is a	Spintronics	All above
statement is true for	spin properties	widely used	devices are	
spintronics?	of the electron	spintronics	influenced	
I I I I I I I I I I I I I I I I I I I		devices	by the	
			presence of	
			the magnetic	
			field	
A decrease in size of	decrease in band	increase in band	emission of	no change in either
quantum dots results in	gap energy	gap energy	longer	band gap or
	Sal currel	Sub cuci 21	wavelengths	emissions
The quantum confinement	in all	if the particle	when the	when the size of the
		-		
				-
	-		-	-
	11011 51ZC5		-	•
			Broglie	electron
effect is observed	nanoparticles irrespective of their sizes	size is above 20 nm	size of the particle is too high than the de-	particle is too sm to be comparable the de-Broglie wavelength of t

			of the	
			electron	
The idea and concept of	Enrico Fermi	Albert Einstein	Richard	Wolfgang Pauli
Nano was put forth by	Linico Periin	Albert Ellistelli	Feynman	wongang Laun
The nanoscience deals with	1	10	-	1000
the materials with at least	1	10	100	1000
one dimension measuring				
less than nm.	1	10	100	1000
1 nm = Å.	1	10	100	1000
Thin films are an example of	0 D	1 D	2 D	3 D
nanostructures.				
Following is an example of	mechanical	nucleation and	e-beam	ball milling
bottom-up approach for the	milling	growth	lithography	
synthesis of nanostructured				
materials.				
Which ratio is important in	weight/volume	volume/weight	surface	volume/surface area
dictating properties of	_		area/volume	
nanomaterials?				
Which of the following in	nanaowire	nanorod	nanotube	All above
1D nanostructure?				
When the size of the particle	Chemical	Mechanical	dielectric	All above
decreases to nanometer	reactivity is	strength is	constant	
range	improved	improved	may change	
Nanomaterials are the	1 nm	10 nm	100 nm	1000 nm
materials with at least one				
dimension measuring less				
than				
Surface to volume ration of	3/r	2/r	$3/r^2$	$2/r^2$
sphere of radius r is				
The melting point of	Increases	Decreases	Remains	Increases then
particles in nano form			same	decreases
The first talk of	Albert Einstein	Newton	Gordon E.	Richard Feynman
nanotechnology was given			Moore	
by				
Following is an example of	Ball milling	Nucleation and	Molecular	Gas phase
top-down approach for the		growth	beam	agglomeration
synthesis of nanostructured			epitaxy	
materials.				
Quantum confinement is	10 nm	2 nm	100 nm	1000 nm
observed at dimensions				
below				

Long answer questions

- 1. Write a note on man and environment.
- 2. Write a note on energy chains.
- 3. Write a note on wind energy quantum.
- 4. Describe in short brief types of wind-turbine generator unit.
- 5. Write a note on classification of energy resources.
- 6. Write a note on merits and limitations of solar photo voltaic systems
- 7. Discuss power of a solar cell and solar PV panel.
- 8. Explain utilization of solar energy by thermal route.
- 9. Explain utilization of solar energy by photo voltaic route.
- 10. Discuss in brief biomass energy resources: a) biomass from cultivated crops,b) biomass from waste organic matter.
- 11. Discuss in brief superconductivity and critical temperature.
- 12. Write a note on London equation and penetration depth.
- 13. What is Isotope effect?
- 14. Write a note on critical current.
- 15. Write a note on quantum confinement?
- 16. Discuss in brief top-down and bottom approach.
- 17. Explain in brief applications of nanotechnology in various fields.
- 18. Discuss in brief ball milling method to synthesize nanostructured material.
- 19. What are applications of nanotechnology in spintronics?

Short answer type questions

- 1. Describe in short efficiency factor of wind turbine unit.
- 2. Describe in short renewable source of energy.
- 3. Discuss in short solar constant, clarity index and solar insolation.
- 4. What are prospects of solar PV systems?
- 5. Write a short note on biomass conversion process.
- 6. Explain in short Meissner effect.
- 7. Discuss in short Type-I and Type-II superconductors.
- 8. Discuss in short magnetic levitation.
- 9. Write a short note on Applications on nanotechnology.
- 10. Write a note on quantum dots and state its applications.
- 11. Discuss 0D, 1D, 2D and 3D nanostructures with suitable examples.