Scat No. 192 Total No. of Pages: 3

M.Sc. (Part-I) (Semester-II) Examination, March-2023 CHEMISTRY (NEP-2020)

Analytical Chemistry-II (Paper-VIII-CH-2.4,APCH 2.4, IND 2.4) (CBCS)

Sub. Code: 90166/90076

Day and Date : Tuesday, 20 - 06 - 2023

Total Marks: 80

Time: 10.30 a.m. to 01.30 p.m.

Instructions:

- 1) Attempt in all the five questions.
- 2) Question No.1 is compulsory.
- Attempt any Two questions from Section-I and any two from Section-II.
- 4) Answers to all questions from should be writtem in one answer book.
- 5) All questions carry equal marks.
- 6) Figures to the right indicate full marks.

Q1) Answer the following questions:

[16]

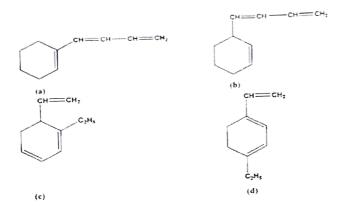
- a) List the factors affecting chemical shift.
- b) Differentiate between protonated ion and adduct ion.
- How will you differentiate between organochlorine and organobromine compound using MS spectra.
- d) Calculate the wavelength (λmax) of given examples 1,3,5-hexatriene

- e) How many signals does the aldehyde (CH₃)₃CCH₂CHO have in 'H NMR and ¹³C NMR spectra?
- Define Beer's Lambert Law.

- How will you differentiate trans-stilbene and cis-stilbene using UV-Vis g) spectroscopy?
- State the unique advantage of ASS in analysis of metals. h)
- What is thermogravimetric analysis? i)
- What is carrier gas in connection with thermal analysis and state its j) significance?
- What are the criteria for selecting the sample holders used in TG analysis? k)
- Compare between DSC and DTA. 1)
- Which technique is generally used to deal with solid samples in AAS? m)
- Which of the following molecules will show IR spectrum HCl, CH₄, n) CO₂, H₂ and N₂O.
- How is sample prepared for AAS/ICP-AES? 0)
- ICP-OES means p)

SECTION - I

- What is spin-spin coupling? Explain with examples the types of spin-*Q2*) a) spin couplings. [8]
 - Deduce the structure from the given data: b)


 $M.F.: C_8H_{11}N$; IR: 3350, 1596, 1020, 761, 703 cm⁻¹.

PMR: δ 7.2 (s, 5H), 3.87 q, 1H), 1.83 (s, 2H), 1.2 (d, 3H).

¹³C-NMR: 148, 128, 126 125, 51, 26. Justify the spectral data.

- Explain the instrumentation, working and applications of mass *Q3*) a) spectrometry.
 - Explain the Woodward-Feiser rule for calculating absorption maxima with suitable examples. b)
 - State the applications of IR spectroscopy. How are primary, secondary and tertiary alcohols distinguished using IR spectroscopy? c)

- Q4) a) What is McLafferty rearrangement? Explain with suitable examples. [8]
 - Explain how the ultraviolet spectrum can be used to decide between the following isomeric systems.

c) Compare between EI and CI mass spectrometry.

[4]

SECTION -II

- Q5) a) Write note on thermogravimetric analysis. State the factors affecting TGA thermogram.
 - b) How is TG useful in characterizing the food materials and state its significance? [4]
 - c) Compare between TGA and DSC [4]
- Q6) a) Ellaborate the significance of AAS, its instrumentation and applications in detail.
 - b) Explain the reasons of spectral interferences in AAS and measures to reduce the same. [4]
 - c) Construction and working of Hollow Cathode Lamp in AAS. [4]

- a) State the advantages and disadvantages of AAS.
- b) Explain the shielding and deshielding effects.
- c) Compare between base peak and molecular ion peak
- d) Industrial Applications of DSC
- e) Different modes or types of thermogravimetric analysis.

Spectroscopic Data

Table: I Some characteristic IR frequencies (Only approximate values)

 \equiv CH, 3300; =CH,3050; O=C-H,2800; NH,3300; O-H,3600; C≡N, 2200; C=C, 1620 to 1680; Aromatic, 1600-1500; C=N, 1660; Ketone, 1720; Ester, 1740; Saturated acids, 1720; Saturated aldehydes, 1730; Saturated amides, 1650; CH=CH₂,H (CIS), 690; C=H, 790-840; NO₂, 1530 and 1350; Monosubstituted aromatics 690-710 and 730 to 770; Disubstitued 735-770; Trisubstituted 750-810; Tetra substitued, 770, 800-860,: -CO-CH₂-CI, 1745-1725 all values are in cm⁻¹

Table:II Approximate chemical shifts of $-CH_3$, $-CH_2$ and -CH protons in δ (ppm)

 $C-CH_3$, 0.9; $O-CH_3$, 1.6; $Ar-CH_3$,2.2; $O=C-CH_3$,2.3 $N-CH_3$, 2.3; $O-CH_3$, 3.3; $C=CH_2$, 4.6; to 5.3; C=CH; Ar-H, 7 to 9; -CO-C=CH,6.2; C-CH-CO, 5.7.

Table: III Approximat¹³ C chemical shifts

R-CH₃, 530; R-CH₂-R, 25-55; R₃-CH, 35 to 70; R₄C, 30-50; R₃C-O, 57-80; R₃C-N, 60 to 75; C \equiv C, 75 to 105: C \equiv N, 110 to 125; C=C, 100 to 140; Aromaics 115 to 145; R-COOR/R-CONH₂, 155-180; R-COOH, 165-185; R-CHO, 185-205; RCOR, 190-225

