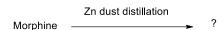
Course Name:- Master of Science

Subject Code:- 81566

Subject Name:- M.SC. Part No - 2(Sem-4) CBCS - Chemistry of Natural

Products


Questions for question number 1.

Shorts answers questions/Multiple choice/Fill in the blanks/ one sentence answers/one word answers.

Note: Please consider only integer number for number of questions.

- 1). Write the structure of the starting materials used in the synthesis of riboflavin.
- 2) Enlist any two adrenocortical hormones.
- 3) Calculate the double bond equivalent in camphor.
- 4) Enlist any two biological functions/applications of prostaglandins.
- 5) Reserpine on hydrolysis gives -----.
- 6) Oestrone contains ----- chiral centers.
- 7) Santonin on distillation with Zn dust gives -----and ----as the products.

9)

10)

11)

12)

13)

- 14) State the uses of Reserpine in medicine.
- 15) What are primary and secondary metabolites?
- 16) What are Vitamins and provitamins?

17)

18)

19) How will you confirm α -Santonin is γ -Lactone?

20.)

21.)

- 22.) What is isopyrene rule?
- 23) Draw the structure of aldosterone?
- 24).
- g) Methyl reserpate Se ?
- 25.
- h) Camphor \longrightarrow 1
- 26.)
- j) Cholesterol Se → ?
 Heat
- 27) What are fatty acids?
- 28) Write the structure of Cholesterol.
- 29) Write the structure of methyl morphol.
- 30) Define the term vitamins.
- 31) State any two medicinal uses of morphine?
- 32) Give any two functions of Vit-B6

33) Zingiberene
$$\frac{O_3}{}$$
?

b) Camphor
$$\xrightarrow{\text{NH}_2\text{OH}}$$
 ?

c) Carvone
$$\xrightarrow{Br_2}$$
 ?

- 36) What are Vitamins and pro-vitamins?
- 37) Give any two physiological functions of progesterone.

h) Morphine
$$\frac{\text{KOH}}{\text{Fusion}}$$
?

- 39) What are sex hormones?
- 40) What are lipids? Give one examples.

m) Biotin
$$H_2O_2$$
 in CH_3COOH ?

42) Define the term biosynthesis?

43.)

- 44.) What are the major five classes of lipids?
- 45). Identify class of reaction involved in following transformation.

- a) Elimination

- b) Substitution c) Addition d) Addition followed by Elimination
- 46). Which of the following can be used as a precursor for synthesis of sex hormones?
 - a) Androsterone
- b) Cartisone
- c) Aldosterone
- d) Diosgenin
- 47). Which of the following hormone can be synthesized from Diosgenin?
 - a) Androsterone
- b) Cartisone
- c) Aldosterone
- d) Progesterone
- 48). Which of the following is not recognized as sex hormone?
 - a) Testosterone
- b) Cartisone
- c) Estrone
- d) Progesterone
- 49). Which of the following best describes hormones?

- a) Hormones are relatively unstable and work only in the area adjacent to the gland that produced them.
- b) Hormones are stable, long-lasting chemicals released from glands.
- c) All hormones are lipid-soluble.
- d) Hormones are chemical messengers that are released into the environment.
- 50.) The biosynthetic precursor for the steroids is _____.
 - a) secologanin
- b) shikimic acid
- c) mevalonic acid
- d) α-ketoglutaric acid
- 51.) Identify the name reaction by which following transformation can be carried out.

- a) Michael addition
- b) Aldol condensation
- c) Robinson annulations
- d) Dickmann condensation
- 52.) The most important compound in the synthesis of cortical hormones is_____
 - a) Sarette's ketone
- b) Aldosterone acetate
- c) Cortisone
- d) Cortisone acetate
- 53.) Correct order of reagents in following transformation is

- a) OsO₄, MsCl: Pyridine, t-BuOK b) t-BuOK, MsCl: Pyridine, OsO₄
- c) MsCl: Pyridine OsO₄, t-BuOK d) OsO₄, t-BuOK, MsCl: Pyridine

54.) Identify the proper sequence of reagents and name reaction involved in following transformation.

- a) t-BuOK, Aldol condensation, HCl
- b) t-BuOK, Knoevenagel condensation, HCl
- c) t-BuOK, Robinson Annulation, HCl
- d) t-BuOK, Dieckmann condensation, HCl
- 55.) Bile acid can synthesise from_____
 - a) Cholesterol
- b) Amino acids
- c)Bilirubin
- d) Protein

- 56.) What is mol. Formula of reserpine?
 - a. $C_{33}H_{42}O_8N_2$ b. $C_{33}H_{40}O_8N_2$ c. $C_{33}H_{40}O_9N_2$ d. $C_{33}H_{41}O_8N_2$.
 - 57.) The natural source of reserpine is
 - a. Rauwolfia serpentina b. Cucumis sativa c. Lantena camera d. Argemona Mexicana
 - 58.) How many chiral carbons are present in reserpine?
 - a. Five b. Six c. Seven d. Eight.
 - 59.) Methyl resrpate on alkaline hydrolysis gives......
 - a. Reserpic acid + 3,4,5 tri-methoxy benzoic acid
 - b. Reserpic acid + Methanol
 - c. Reserpic acid + Benzoic acid \
 - d. None of these.
 - Reserpine on reduction with LiAlH₄ produses.....
 - a. Reserpine diol + Benzyl alcohol
 - b. Reserpine diol + Trimethoxy benzyl alcohol
 - c. Reserpine diol + Trimethyl benzyl alcohol

61.) α-y	vohimbine on KOH fusion gives
62.) Re	serpic acid on treatment with gives γ lactone.
	b. Ac ₂ O c. PPA d. I ₂ serpine on reaction with Hg(OAc ₂) produces
•	
64.) Ho a. Five	ow many methoxy groups present in deserpidine? e b. four c. Three d. None of these.
65.) Co	denine on oxidation with CrO ₃ forms
a. Mo	orpholine b. Reserpic acid c. Tnebeinine d. Codeinone
66.) WI	nat is product of reduction of Codeine with H ₂ and Pt?
a. 7	Tetrahydro codeine b. Dihydrocodeine c. Codeinone d. None of these.
a.	deine on reaction with CH_3I produces
68.) Mo	orphine produceson reacting with Conc. HCl.
a. Dihy	dro Morphine b. dihydroapomorphine c. Apomorphine d. Morphenol

d. None of these.

69.) Thebaine on treatment with concentrated HCl gives..... a. Thebainine b. Morphine c. apomorphine d. none of these. 70.) How many moles of CH₃I requires to quaternize codeine? b. Two c. Three a. Four d. One. 71.) Which color is formed when codeine treated with FeCl₃? a. Violet b. Red c. Blue d. None of these. Morphine on reaction with Me₂SO₄ produces..... 72.) a. Dimethyl codeine b. codeine c. Thebaine d. None of these. Which one of the example belongs from terpenoids class? 73.) a. Abietic acid b. Morphine c. Ascorbic acid d. Cholesterol. 74.) What is molecular formula of isoprene unit? a. $C_{12}H_{24}$ b. C_5H_8 c. $C_{10}H_{12}$ d. C_6H_6 75.) How many -COOH groups are present in Abietic acid? a. Two b. Three c. Four d. One 76.) Which type of diene system present in Abietic acid? a. Homoannular diene system b. Heteroannular diene system c. Both a and b d. None of these. 77.) How many double bonds are present in Abietic acid? Two b. Three c. Four d. One 78.) What type of carboxylic group present in Abietic acid? a. Primary b. Secondary c. Tertiary d. Quaternary

79.)	What is mol. Formula of camphor?
a.	$C_{10}H_{16}O$ b. C_5H_8 c. $C_{10}H_{12}O$ d. C_6H_6
80.)	How will you confirm α -Santonin is γ -Lactone?
a.	IR sepctra b. Mass spectra c. Both a and b d. None of these
81.)	Camphor on oxidation with HNO ₃ gives
a.	Tetrahydroxy Abietic acid b. Camphoric acid c. Fatty acid d. Biotin.
82.)	Camphor on treatment with NH ₂ OH gives
	a. Ketone b. Aldehyde c. Carboxylic acid d. Oxime.
83.)	β-Cuparenone on oxidation with HNO ₃ gives
	Benzene 1,4-dicarboxylic acid b Benzene 1,3-dicarboxylic acid c. Benzene 1,2-dicarboxylic acid d. 1,4-dicarboxylic acid.
84.)	Which one of the following is poly-terpenoids?
a.	Abietic acid b. Zingiberene c. Cholesterol d. Rubber.
85.)	How isoprene units are attached in terpenoids shown by Sci. Ingold?
a.	Head to Head b. Head to Tail c. Tail to Head d. Tail to Tail.
86.)	Abietic acid on dehydrogenation with Se and charcoal gives
a.	Retene b. 1-methyl-7-isopropyl phenanthrene c. Both a and b d. All of these
87.)	Abietic acid has $\lambda \max (\pi \pi^*)$

a. 214 nm b. 190 nm c. 239 nm d. 320 nm 88.) Zingiberene on reduction with Hydrogen and P	t in	acetic	acid
produces			
c. Hexahydro zingiberene d. None of these.			
89.) Sat. formula of zingiberene is $C_{15}H_{30}$. So it is			
a. Bicyclic in nature.			
b. Tricyclic in nature			
c. Both a and b			
d. Monocyclic in nature.			
90.) What type of diene system is present in zingiberene?			
a. Homoannular.			
b. Heteroannular			
c. Acyclic			
d. All of these.			
91.) Santonin on treatment with red phosphorous and HI gives	••		
a. d-santonous acid.			
b. dl-santonous acid			
c. Santinic acid			
d. Both a and b.			
92.) Abietic acid evolvesgas when warm with H ₂ SO _{4.}			
a. CO ₂ b. CO c. H ₂ d. CH ₄			
93.). Camphor is			
a. Bicyclic in nature.			
b. Tricyclic in nature			

c. Acyclic in nature

d. Monocyclic in nature. 94.) Camphor on oxidation gives compound A. A has mol. Formula C₁₀H₁₆O₄. Where A is a a. Monocarboxylic acid. b. Dicarboxylic acid c. Tricarboxylic acid. d. Tetracarboxylic acid 95.) Which is true in case of vitamin biotin? It is a monocaroxylic acid b. It is a optically active compound c. It contains N and S d. All of these 96.) Which side chain is present in Vit. H or Biotin? a. n-propyl side chain b. 1-methyl-butane c. n-butyl side chain d. δ-valeric acid side chain 97.) What is hydrolysis product of biotin with barium hydroxide? a. Di-amino carboxylic acid b. butyric acid c. δ -valeric acid side chain d. Adipic acid 98.) Riboflavin on acetylation forms tetra-acetyl derivative, which confirms........ a. Riboflavin contains two double bonds b. It posses four hydroxyl groups c. It is bi-cyclic in nature d. None of these. 99.) Riboflavin on oxidation with lead tetra acetate gives...... a. Carboxylic acid. b. One mole of acetone c. One mole of formaldehyde d. None of these. 100.) Vit. D deficiency causes......disorders. a. Night Blindness b. Rickets c. Beriberi d. None of these. 101.) Which one of the following ring is present in structure of Vit. B6? a. Thiophene b. Furan c. Pyrole d. Pyridine 102.) What are the sources of Vit. C? a. Lemon b. Citrus fruits c. Orange Fruits d. All of these 103.) How many nitrogen atoms are present in lactoflavin?

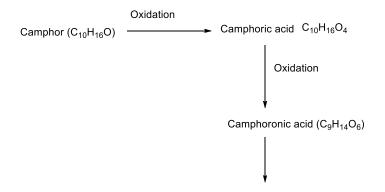
- a. Two b. Three c. Four d. One 104.) Vit. B2 on treatment with acetone forms di-acetone acetate. What this observation indicates? a. Presence of glycol linkage b. Presence of alcoholic hydroxyl groups c. Both a and b d. All of these. 105.) What is one of the main functions of PGE_2 ? a. Gastric acid secretion b. Uterus contraction c. Inhibit platelet d. All of these. What is one of the main functions of PGF₂? 106.) Gastric acid secretion b. Uterus contraction c. Urinary bladder contraction d. Both b and c.
- 107.) From which prostaglandins are synthesized in the cell?
 - a. arachidinic acid b. valeric acid c. Uric acid d. None of these.
- 108.) . Lipids are made from.......
 - a. Fatty acids b. Uric acid c. Fatty acids and glycerol d. Glycerol.
- 109.) Which of the following belongs from the lipids?
 - a. Triglycerides b. Uric acid c. Cholesterol d. Both a and c
- 110.) Biotin is composed of
 - a. Ureido ring fused with a tetrahydrothiophene ring.
 - b. δ -valeric acid side chain
 - c. Both a and b
 - d. All of these.
- 111.) Vitamin H is a.....
 - a. Dicaroxylic acid. b. Monocarboxylic acid
 - d. Tertiary Carboxylic acid. c. Hydrocarbon

Long answer Questions and Short Notes. (For question no. 2 to 7)

1. Outline the steps involved in the conversion of

2.

3.


- 4. How will you establish the following?
 - i) Nature and position of ethanamine side chain in morphine
 - ii) Position of hydroxyl group and ethereal linkage in morphine
 - iii) Stereochemistry of reserpine at C₁₅ and C₂₀.
- 5. What are prostaglandins? How they are classified? Describe Corey's approach for the synthesis of PGE₂.
- 6. Outline the synthesis of Biotin.
- 7. Establish the structure of camphor on the basis of analytical evidences.
- 8. How will you prove position of two double bonds in Abietic acid?
- 9. Discuss the biosynthesis of lanosterol.
- 10. Outline biogenesis of coniine.
- 11. Synthesis of α -santonin.
- 12. Classifications and functions of lipids.
- 13. Biological functions of Vitamin D and E.
- 14. Discuss the synthesis of reserpine investigated by Woodward.

- 15. Discuss the biogenesis of terpenoids taking suitable examples.
- 16. Nature and position of the double bond in the structure of cholesterol
- 17. Stereochemistry of morphine at C₅ and C₆
- 18. Structure of Vitamin B6 on the basis of synthetic evidence
- 19. Give the analytical evidence for the structure of Vitamin E
- 21. How is the structure of abietic acid established?
- 22. Give the synthetic ingredients for the structure of β -Cuparenone.

23.

- 24. Give evidence for the nature of sulfur in Biotin.
- 25. Abietic acid shows a Maxima at 238 nm (E 16,000) in UV. Explain.
- 26. Discuss the various steps involved in identification of important structural features of Morphine (Stereochemical details are not expected).
- 27. Predict the product and justify your answer.

28. Interpret the observations of the following reactions in order to establish the structure of the camphor.

Iso - Butyric acid + trimethylsuccinic acid + CO₂ + Carbon

- 29. Outline anyone synthesis of riboflavin.
- 30. Give analytical evidences to establish the position of two double bonds in Zingiberene.
- 31. Discuss in brief chemistry of prostaglandins with special reference to their origin, classification and biological functions.
- 32. Progesterone from Ergosterol.
- 33. Barbier Wieland degradation.
- 34. Cis-fusion rings in biotin.
- 35. Total synthesis of Santonin.
- 36. Discuss the synthesis of morphine investigated by Gates.
- 37. How is the structure of santonin established?
- 38. Discuss the various approach for the synthesis of $PGF_2\alpha$.
- 39. Diel's hydrocarbon
- 40. Synthesis of vitamin-B₁.
- 41. Point out the steps involved in the synthesis of progesterone from cholesterol.
- 42. How will you establish structure of carvone on the basis of analytical evidences?
- 43. How will you prove the structure of Camphoric acid?
- 44. How will you confirm the following?
 - i) Configuration of ephedrine.
 - ii) Stereochemistry of morphine of C₁₄

- iii) Stereochemistry of Reserpine at C₃.
- 45. What are Vitamins? Give functions of it in brief and discuss the analytical evidences in support of structure of Vit. B1.
- 46. Give an account on physiological functions of prostaglandins.
- 47. How will you establish the position of two rings and functional nature in biotin?
- 48. Point out the synthesis of cholesterol.
- 49. Outline the synthesis of Sarett ketone using appropriate reaction sequences as well as reagents
- 50. Discuss the classifications of lipids.
- 51. Write a note on biogenesis of prostaglandins.
- 52. Highlights the role of lipids in physiology.
- 53. Write a note on classification of terpenoids based on number of isoprene units.
- 54. Elaborate the biosynthesis of the morphine.
- 55. How will synthesize lysergic acid?
- 56. Explain in detail the structure of the papaverine.
- 57. Point out the total synthesis of papaverine.
- 58. Write a note on structure of lysergic acid.
- 59. Explain the biosynthesis of reserpine.
- 60. Discuss the synthesis of camphor, camphoric acid and camphoronic acid.
- 61. Comment on the biogenesis of the Abietic acid.
- 62. Establish the structure of carvone.
- 63. How will synthesize carvone?
- 64. Write a note on occurrence and nomenclature of steroids.
- 65. Discuss the basic skeleton of the steroids.

Total No. of Pages: 3

Seat	
No.	

M.Sc. (Part - II) (Semester - IV) (CBCS) Examination, November - 2019

ORGANIC CHEMISTRY (Paper - XV) Chemistry of Natural Products Sub. Code: 61432

Day and Date: Thursday, 21 - 11 - 2019 Total Marks: 80

Time: 03.00 p.m. to 06.00 p.m.

Instructions: 1) Attempt in all five questions.

- 2) Q.1 is compulsory.
- 3) All questions carry equal marks.
- 4) Answer to the all questions (Section I and II) should writtren in the same answer book.
- 5) Figures to the right indicate marks.
- 6) Attempt at least two questions from Section I and any two questions from Section II.
- **Q1)** Answer the following (One mark each):

[16]

- a) State the isoprene rule.
- b) Which steroid is useful in treatment of asthma?
- c) How will you prove presence of gamma lactone in santonin?
- d) State the common amino acids involved in biogenesis of alkaloids.
- e) Give any two functions of corticosteroids.
- f) How many and what type of methyl groups present in Abietic acid?
- g) Write the name and structure of the product when morphine is treated with Zn-dust.
- h) Write the structure of shikimic acid.
- i) What is oxidation product of codeine?

molecule? k) Define the term biosynthesis. Give any two important functions of Vit. B₁. m) Give the name of any one 'Hemlock Alkaloid'. Name any two adreno-cortical hormones. o) How many stereoisomers are present in ephedrine? p) Enlist the functions of Vit. H. **SECTION - I** Q2) Suggest suitable routes, reagents and steps for the following conversions. (Any two): [16] a) Diosgenin ----- → Progesterone b) Cholesterol ----- → Testosterone c) Sarett's ketone ----- → Aldosterone How will you establish the following? Q3)Nature and position of double bond in the structure of cholesterol. [6] Structure of Vit. B₆ on the basis of synthetic evidence. [6] The presence of angular methyl group at C_{10} in Abietic acid. [4] How will you prove the following in morphine. Stereochemistry of morphine at C_5 and C_6 . [8] b) Phenantherene nucleus. [4] Structure of camphoronic acid on the basis of synthetic evidence. [4]

How many chiral centre's present in naturally occurring oestrogen

i)

SECTION - II

- Q5) a) How would you establish the structure of santonin on the basis analytical evidences.[12]
 - b) Presence of heteroannular diene system in Abietic acid. Explain. [4]
- **Q6)** Discuss the synthesis of reserpine investigated by Woodward. [16]
- Q7) Write short notes on following (Any Two): [16]
 - a) Classification of prostaglandins.
 - b) Biosynthesis of cholesterol from squalene.
 - c) Synthesis of zingiberene.

Seat	
No.	

Total No. of Pages: 2

M.Sc. (Part - II) (Semester - IV) Examination, November - 2018 ORGANIC CHEMISTRY (Paper - XV) (CBCS)

		9	Chemist	try of Natura	l Products	9
			Su	ıb. Code : 61	432	
Day	and l	Date : Wed	dnesday, 28 - 1	11 - 2018		Total Marks: 80
Tim	e: 02	2.30 p.m. to	o 05.30 p.m.			
Instr	uctio	ns: 1)	Attempt in al	l five questions.		
		2)	Q. 1 is compu	ılsory.		
		3)	All questions	carry equal mar	ks.	
		4)	Answer to th same answer	_	section-l AND II) s	should written in the
		5)	Figures to the	e right indicate m	arks.	
		6)	Attempt at le from Section-	-	s from Section-I ar	nd any two questions
Q 1)	Ans	wer the fo	ollowing. (One	e mark each):		[16]
	a)	What is b	biogenesis an	d biosynthesis?	•	
	b)	Give the	stereoisomer	s of ephedrine.		
	c)	What are	e vitamins? He	ow they will dif	fer from hormor	nes.
	d)	Draw the	e structure of	Testosterone.		
	e)	State the	important bio	ological function	ons of Aldostero	ne.
	f)	Write the	e structure of	cholesterol.		
	g)	Enlist the	e functions of	Wit. B ₁ .		
	h)	Identify t	the chiral cent	tres in biotin.		
	i)		steroids are	used in treatme	ent of asthma.	
	j)	Oestrone	e conatins	chiral ce	ntres.	
	k)	How will	l confirm bicy	clic nature of c	aryophyllene.	
	1)	Write the	e structure of	Vit. H		
	m)	$\left(C_{5}H_{8}\right)_{n}$	Distructive distillation	?		
	n)	β – Cupe	eranenone —	$\stackrel{\mathcal{O}_3}{\longrightarrow}$?		1
	o)	Give the	name of any	one 'Hemlock A	Alkaloid'.	

State any two medicinal uses of morphine.

p)

SECTION - I

- Q2) a) Highlights the classification of vitamins. Discuss the structure of riboflavin on the basis of analytical evidences. [10]
 - b) Explain biosynthesis cholesterol from squalene.

[6]

Q3) a) How will you prove the following in morphine.

[10]

[6]

- i) Phenantherene nucleus
- ii) Cyclic tertiary nature of Nitrogen.
- iii) Relation of C₅-oxygen to C₆ hydrogen in morphine.
- b) Explain the stereochemistry of reserpine at C_{16} and C_{18} .
- **Q4)** a) Give an outline of various analytical evidences to establish the structure of caryophyllene. [12]
 - b) Abietic acid shows absorption at 238 nm in Ultra Violet spectroscopy. Explain. [4]

SECTION - II

- Q5) a) What are hormones? Explain the key steps in conversion of diosgenin into progesterone. [10]
 - b) How will you convert Sarett's ketone to Aldosterone? [6]
- **Q6**) Outline the following conversion with appropriate reagents and steps involved in it.
 - a) Cholesterol \longrightarrow \longrightarrow Testosterone. [8]
 - b) \longrightarrow \longrightarrow Santonin. [8]
- Q7) Write short notes on following (Any Four): [16]
 - a) Stereochemistry of reserpine at C_{16} , C_{17} and C_{18} positions.
 - b) Classification and Physiological Functions of prostaglandins.
 - c) Barbier-Wieland degradation.
 - d) Synthesis of zingiberene.
 - e) Configuration of ephedrine.

Seat No. Total No. of Pages : 3

M.Sc. (Part-II) (Semester-IV) (CBCS) Examination, April - 2019 ORGANIC CHEMISTRY

Chemistry of Natural Products (Paper-XV)

Sub. Code: 61432

Day and Date : Monday, 08 - 04 - 2019 Total Marks : 80

Time:11.00 a.m. to 2.00 p.m.

Instructions: 1) Attempt in all five questions.

- 2) Question no. one is compulsory.
- 3) All questions carry equal marks.
- 4) Answer to the all questions (Section-I And II) must be written in the same answer book.
- 5) Figure to the right indicate marks.
- 6) Attempt at least two questions from Section-I and any two questions from Section-II.

Q1) Answer the following. (One mark each)

[16]

- a) How will you prove that santonin contains lactone ring?
- b) What is physiological action of (-) ephedrine?
- c) What are disadvantages of morphine as an analgesic drug?
- d) Write the structure of heroin.
- e) Provide the structure of ergocalciferol.
- f) State the structure of cholesterol with its stereochemistry.
- g) Give any two examples of steroid hormones.
- h) State any two important functions of vitamin E.
- i) Which precursors used in biogenesis of indole alkaloids?
- j) What do you mean by sesquiterpenoids?

[10]

SD - 2	U
k) Abietic acid $\xrightarrow{\text{Warm}} ?$	
1) Santonin $\frac{[O]}{KMnO_4}$?	
m) Morphine $\xrightarrow{\text{Conc.HCl}}$?	
n) Reserpic acid $\xrightarrow{\text{KOH}}$?	
o) Draw the structure of Aldosterone.	
p) What are sex hormones?	
SECTION-I	
a) Discuss the structure of (-) ephedrine on the basis of analytical evidence	es [8]
b) How would you establish the 'Trans' relationship between C_5 oxygen C_6 hydrogen in morphine?	tc [8]
a) Discuss the total synthesis of progesterone with its desired stereochemis and comment on its physiological role in human body. [1]	stry [6]
a) Illustrate the structure of zingiberene on the basis of analytical evidence	es [2]
b) Illustrate the functional nature of nitrogen in reserpine.	[4]
SECTION-II	
a) Outline the biogenetic route of the tyrosine. [1	[0]
b) How would you establish the nature sulfur in biotin?	[6]

Point out the steps involved in the synthesis of abietic acid reported by

Q6) a)

Sci. Storck.

[16]

- a) Synthesis of vitamin E.
- b) Clinical importance of prostaglandins.
- c) Biosynthesis of Conin.

CCCC

SUX

SUF

Sea No.				6 V y ·			47.5		. 3.	~
- 11		*							tion	
4.0	M.S	: (Pa	rt - II) (S	emester	- IV) (CBC	CS) Ex	amina	illon,	
				March	- 2023	3.	•	12200		
2	- 2	in .	OR	GANIC	CHEMIS	STRY	7		19 (H)	370
		CI	nemistry of	Natural	Prdouc	ts (Pa	iper - 7	(V)		1 1
	\$ 19	And the same		. Code :				154	4.1	
					125			Total	Marks:	80
V 20 10 10 10 10 10 10 10 10 10 10 10 10 10			iday, 16 - 06		70	F-1		101111	Man .	
			o 01.30 p.m.		long			(10.4)		9.7
nstru	ctions:	8000000		l five questi o. 1 is comp						
		2)	All questio			s.		177		2000
	7	3) 4)	Answer to	the all que	stions (sec	tion-I	and II) r	nust be v	vritten in	the
		. 47	same answ	er book.		di T			100	
	0.000	5)	Figure to the	ae right ind	licate mar	ks.	W.	F 22		
	.11	6)	Attempt at	least two q	uestions f	rom so	ection-I a	ind any i	wo quesu	ons
. 10	7		from Section	m-II.	L.					#
					ed .	1892	4.	- 5	a to a	
1) A	nswer	the f	ollowing :	والبيج أمستد					[16]
						2	17.74	F 80		
a)	60		$ene \xrightarrow{o_1}$				40.00			
·b)	W	at is n	nolecular fo	rmula of i	soprene	unit?	1			
10000	i)	C,J				ii)	C_5H_8		192	"70
		14.17	AT-10	24	æ . s:	iv)	C_6H_6			
	11)	C ₁₀ F	¹ 12 -		at IDIC	1000000		Constants.		
c)	β-С		none on ox			3 give		•		
	i)	Benz	zene 1,4-dio	arboxylic	acid				, T. I.	381
	ii)	Benz	ene 1,3-dio	arboxylic	acid	33	200		- E	
			ene 1,2-dic			(3)	4, 4			
	iii)								8 294	
	iv)	1,4-0	licarboxylic	acia	hi t	1 10			5 mg/s	10
d)_	Can	phor	Iso-amyl nitrit	° →?						
	The	hioar	nthetic pre	cursor fo	r the ste	roids	is		4	4, 6.
e)	The	DIOSY	unione bro	A 141 A 44	ACTIVITY OF THE PARTY OF THE PA	•••	1, 21-2		A	

shikimic acid

α-ketoglutaric acid

ii)

i) secologanin

iii)

mevalonic acid

-	f) What are Vitamins and pro-vitamins:		Linear	01102		
	 What are Vitamins and pro-Vitamins. Which of the following is not recognized. 	ced as	sex norm	pilet		-
	n Testosterone	ii)	Cartison	ie.		
		iv)	Progesto			
	iii) Estrone) How many moles of CH ₃ I requires to c	quater	nize code	ine?		
, h	*O	ii)	Two			*
	i) Four		One	18		
	iii) Three	iv)	4	185	25	
i)	How many chiral centers are present in	oest	rone2.		G	
j)	Riboflavin — bight → ?	150				7
k)	What are sex hormones?					
, I)	What are lipids? Give one examples.		1 a %			69
. m)	Biotin $\xrightarrow{H_2O_2$ in $CH_2COOH} \rightarrow ?$			6.		
n)	Define the term biosynthesis?		(48)	4	2.55	
0)	Codeine on oxidation with CrO; forms	S				4
	i) Morpholine	ii)	Reserpio	acid	4.4	
	iii) Tnebeinine	iv)	Codeino			
*1				160	. 100	
p)	What are the major five classes of lipid	5:		87		
-	10 Marie 1980				0.0	255
	SECTION - I					٠.
a)	Outline the synthesis of (±) oestrone usin	g two	different s	tarting ma	terials. [8]	
b)	Point out the steps involved in the scholesterol.	ynthe	sis of pro	gesterone	from [8]	
H		131		1668	2	100
a)	How will you establish structure of Abie evidences?	tic ac	id on the b	asis of ana	alytical [10]	
		3 b.	ula astaŭ		B 30 000	100
b)	How will you prove the structure of Car	npno	ric acid?	40	[6]	

			SG - 249
20	Q4) He	ow will you confirm the following?	[16]
e **	a)	Configuration of ephedrine.	ALOGACIO.
	p).	Stereochemistry of morphine of C14	
	4		
25	2 1		- E
		SECTION - II	
	Q5)-tt)	What are Vitamins? Give functions of it in brief and evidences in Support of structure of Vit. B1.	discuss the analytical
er Na	J b)	Give an account on physiological functions of pro-	ostaglandins. [6]
)	21 10		101
	Q6) a)	How will you establish the position of two rings ar biotin?	nd functional nature in [8]
20	b)	Point out the synthesis of cholesterol.	[8]
	. <i>Q7</i>) Wri	te a note on the following (Any two):	- [16]
Star Till	a)	Synthesis of Zingiberene.	e an eaa
	(d.	Biogenesis of Conin.	200
100		-Biogenesis of Lanosterol.	