"ज्ञान, विज्ञानआणिसुसंस्कारयासाठीशिक्षणप्रसार"

शिक्षणमहर्षी-डॉ .साळुंखेबापूजी Shri Swami Vivekanand Shikshan Sanstha's

Dattajirao Kadam Arts, Science & Commerce

College, Ichalkaranji

DEPARTMENT OF PHYSICS

QUESTION BANK

B. Sc. – III, PHYSICS (Paper-XI), DSE-E3 Classical Mechanics and Classical Electrodynamics

Multiple choice questions.

- 1. What is the number of independent coordinates required to specify a system completely called?
 - a) Constraints
 - b) Degrees of freedom
 - c) Generalized coordinates
 - d) Virtual displacements
 - Answer: b) Degrees of freedom
- 2. Which of the following is an example of a holonomic constraint?
 - a) A rolling disk without slipping
 - b) A pendulum in motion
 - c) A car moving on a road
 - d) A particle under a magnetic field
 - Answer: b) A pendulum in motion
- 3. Which principle states that the virtual work done by constraint forces is zero?
 - a) Hamilton's principle
 - b) D'Alembert's principle
 - c) Principle of least action
 - d) Principle of virtual work

Answer: d) Principle of virtual work

- 4. D'Alembert's principle is used to derive which of the following?
 - a) Newton's laws
 - b) Hamiltonian mechanics
 - c) Lagrange's equation

d) Work-energy theoremAnswer: c) Lagrange's equation

- 5. In Lagrangian mechanics, the Lagrangian LLL is defined as:
 - a) L=T+V b) L=T-V c) L=V-T d) L=2T+V Answer: b) L=T-
- 6. Which of the following is an example of a system with constraints?
 - a) Free particle in space
 - b) A bead sliding on a rotating wire
 - c) A stationary ball
 - d) A uniform electric field

Answer: b) A bead sliding on a rotating wire

- 7. Atwood's machine is an example of a system described by:
 - a) Newton's equations
 - b) Lagrange's equations
 - c) Hamiltonian mechanics
 - d) Quantum mechanics
 - Answer: b) Lagrange's equations
- 8. What kind of motion does a bead experience on a uniformly rotating wire in a force-free condition?
 - a) Accelerated motionb) Circular motionc) Uniform motiond) Oscillatory motionAnswer: c) Uniform motion
- 9. Lagrange's equations are derived using which principle?
 - a) D'Alembert's principle
 - b) Principle of least action
 - c) Principle of virtual work
 - d) Both a and b
 - Answer: d) Both a and b
- 10. Which term describes a constraint that depends explicitly on time?
 - a) Holonomic
 - b) Non-holonomic
 - c) Scleronomic

d) Rheonomic Answer: d) Rheonomic

11. Hamilton's principle states that:a) The total energy is conservedb) The action integral is stationaryc) The kinetic energy is maximizedd) The work done is zeroAnswer: b) The action integral is stationary

12. What is the shortest path between two points in a plane?

- a) A straight line
- b) A parabola
- c) A circular arc
- d) A hyperbola
- Answer: a) A straight line

13. The brachistochrone problem deals with finding:

- a) The shortest distance
- b) The fastest path under gravity
- c) The least energy path
- d) The highest potential energy configuration
- Answer: b) The fastest path under gravity
- 14. Hamilton's principle can be used to derive
 - a) Newton's laws
 - b) Lagrange's equations
 - c) Work-energy theorem
 - d) Both a and b
 - Answer: d) Both a and b
- 15. Which experiment disproved the existence of the ether?
 - a) Michelson-Morley experiment
 - b) Young's double-slit experiment
 - c) Rutherford's gold foil experiment
 - d) Franck-Hertz experiment
 - Answer: a) Michelson-Morley experiment
- 16. Which transformation replaces Galilean transformations in special relativity?
 - a) Newtonian transformation
 - b) Lorentz transformation
 - c) Fourier transformation
 - d) Schrodinger transformation
 - Answer: b) Lorentz transformation

- 17. The postulates of special relativity include:
 - a) The laws of physics are the same in all inertial frames
 - b) The speed of light is constant in all inertial frames
 - c) Time is absolute
 - d) Both a and b
 - Answer: d) Both a and b

18. What happens to the length of an object moving at relativistic speeds?

- a) Expands
- b) Contracts
- c) Remains constant
- d) Becomes infinite
- Answer: b) Contracts

19. Time dilation means that a moving clock runs

- a) Faster
- b) Slower
- c) At the same rate
- d) Unpredictably
- Answer: b) Slower

20. The relativistic addition of velocities states that:

- a) Velocities add linearly
- b) No object can exceed the speed of light
- c) Light slows down in motion
- d) Mass increases with velocity
- Answer: b) No object can exceed the speed of light

21. Einstein's mass-energy relation is given by:

a) E=mc2
b) E=mv2
c) E=mgh
d) E=1/2mv2
Answer: a) E=mc2

Charged Particle Dynamics (6 hours)

- 22. Poisson's equation is given by:
 - a) ∇ .V=0 b) ∇ .V= $-\rho/\epsilon 0$
 - c) $\nabla \cdot E = \rho/\epsilon 0$

d) $\nabla \times E = -\partial B/\partial t$ Answer: b) $\nabla 2V = -\rho/\epsilon 0$

- 23. The motion of a charged particle in a uniform electric field is:
 - a) Parabolic
 - b) Circular
 - c) Straight line
 - d) Random

Answer: a) Parabolic

24. A charged particle moving perpendicular to a uniform magnetic field follows a:

- a) Straight pathb) Circular pathc) Parabolic path
- d) Hyperbolic path
- Answer: b) Circular path

26. Which type of system does Lagrange's equation best describe?

- a) Conservative systems
- b) Non-conservative systems
- c) Static systems
- d) Open systems
- Answer: a) Conservative systems
- 27. The generalized coordinates in Lagrangian mechanics are chosen based on:
 - a) Newton's second law
 - b) The constraint conditions
 - c) Hamiltonian formalism
 - d) Energy conservation
 - Answer: b) The constraint conditions
- 28. Which of the following does not affect the Lagrange's equation formulation?
 - a) External forces
 - b) Time dependency
 - c) Virtual displacements
 - d) Path taken by the particle
 - Answer: d) Path taken by the particle
- 29. Which of the following is true for D'Alembert's principle?
 - a) It applies only to non-inertial frames
 - b) It is an alternative to Newton's laws
 - c) It is based on conservation of energy

d) It applies only to quantum mechanics

Answer: b) It is an alternative to Newton's laws

- 30. Lagrange's equations provide an advantage over Newtonian mechanics because:
 - a) They eliminate force calculations
 - b) They use Cartesian coordinates
 - c) They apply only to static systems
 - d) They ignore energy conservation
 - Answer: a) They eliminate force calculations
- 31. What does Hamilton's principle state about the action integral SSS?
 - a) SSS is always increasing
 - b) SSS remains constant
 - c) SSS is stationary for actual motion
 - d) SSS is minimized for non-conservative systems
 - Answer: c) SSS is stationary for actual motion
- 32. Which mathematical method is primarily used in the calculus of variations?
 - a) Partial differentiation
 - b) Functional differentiation
 - c) Tensor analysis
 - d) Complex analysis
 - Answer: b) Functional differentiation
- 33. In the Brachistochrone problem, the path taken is in the shape of a:
 - a) Straight line
 - b) Parabola
 - c) Cycloid
 - d) Hyperbola
 - Answer: c) Cycloid
- 34. Hamilton's principle can be derived from:
 - a) Work-energy theorem
 - b) Principle of virtual work
 - c) D'Alembert's principle
 - d) Newton's laws
 - Answer: c) D'Alembert's principle
- 35. Which of the following is not an application of the calculus of variations?
 - a) Geodesics
 - b) Principle of least time
 - c) Kinetic theory of gases
 - d) Brachistochrone problem
 - Answer: c) Kinetic theory of gases

- 36. The Michelson-Morley experiment demonstrated that the speed of light is:
 - a) Different in all directions
 - b) Dependent on ether
 - c) Independent of the motion of the observer
 - d) Slower in vacuum
 - Answer: c) Independent of the motion of the observer
- 37. According to special relativity, when an object approaches the speed of light, its mass:
 - a) Decreases
 - b) Increases
 - c) Remains constant
 - d) Becomes negative
 - Answer: b) Increases
- 38. A moving object contracts along the direction of motion due to:
 - a) Length contraction
 - b) Time dilation
 - c) Relativistic mass increase
 - d) Doppler effect
 - Answer: a) Length contraction
- 39. Which of the following is a consequence of time dilation?
 - a) Moving clocks run slower
 - b) Moving objects appear larger
 - c) The speed of light changes
 - d) Mass decreases at high velocity
 - Answer: a) Moving clocks run slower
- 40. The relativistic velocity addition formula ensures that:
 - a) Speeds always add linearly
 - b) No object exceeds the speed of light
 - c) Light speed changes in different frames
 - d) Newton's laws hold at all speeds
 - Answer: b) No object exceeds the speed of light
- 41. Relativity replaces which concept from classical physics?
 - a) Absolute space and time
 - b) Conservation of energy
 - c) Newton's second law
 - d) Wave-particle duality
 - Answer: a) Absolute space and time
- 42. Which of the following is NOT a prediction of special relativity? a) Time dilation

b) Length contractionc) Variable speed of lightd) Mass-energy equivalenceAnswer: c) Variable speed of light

- 45. Laplace's equation applies to:
 a) Regions with no charge
 b) Conducting surfaces only
 c) Dynamic fields
 d) Systems with a net charge
 Answer: a) Regions with no charge
- 46. The motion of a charged particle in a uniform magnetic field is:
 - a) Helical
 - b) Straight-line
 - c) Parabolic
 - d) Chaotic

Answer: a) Helical

- 47. When a charged particle moves in crossed EEE and BBB fields, it follows a:
 - a) Circular pathb) Straight-line pathc) Parabolic pathd) Cycloidal pathAnswer: d) Cycloidal path
- 48. Which of the following is true for motion in a uniform electric field?
 - a) Acceleration remains constant
 - b) Velocity remains constant
 - c) Force is zero
 - d) Motion is helical
 - Answer: a) Acceleration remains constant