LCR Parallel Resonance

Expression for Resonant Frequency:

Parallel resonance circuit is shown in fig(1). One branch of the resonant circuit consists resistance R in series with an inductance L. Capacitor C is connected parallel to the RL combination in other branch. An AC source is applied across this parallel combination. The admittance of the circuit is given by

or

$$
2\pi f_0 = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}} \qquad (\because \omega_0 = 2\pi f_0)
$$

2

 $f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$ 2π VLC L² $=\frac{1}{2}$ $\sqrt{\frac{1}{2}$ π

or

where f_0 = resonant frequency of LCR parallel circuit

Dynamic Resistance

The resistance at resonance is known as dynamic resistance. Consider the following equation.

--------------- (3)

at resonance
\n
$$
\frac{1}{Z} = \frac{R}{(R^2 + \omega^2 L^2)} - j\omega \left[\frac{L}{(R^2 + \omega^2 L^2)} - C \right]
$$
\nat resonance
\n
$$
\left[\frac{L}{(R^2 + \omega^2 L^2)} - C \right] = 0
$$
\n
$$
\therefore \frac{1}{Z} = \frac{R}{(R^2 + \omega^2 L^2)}
$$
\n
$$
\therefore \frac{1}{Z} = \frac{R}{(R^2 + \omega^2 L^2)} \quad \text{3.}\n\text{Substituting in Eqn(1), we get}
$$
\n
$$
\frac{1}{Z} = \frac{R}{L}
$$
\n
$$
\text{Or}
$$
\n
$$
\frac{1}{Z} = \frac{RC}{L}
$$
\n
$$
Z_0 = r_d = \frac{L}{RC}
$$
\n
$$
\text{1.}\n\text{or}
$$
\n
$$
Z_0 = r_d = \frac{L}{RC}
$$
\n
$$
\text{1.}\n\text{or}
$$
\n
$$
Z_0 = r_d = \frac{L}{RC}
$$
\n
$$
\text{2.}\n\text{1.
$$

at resonance

where r_d is known as dynamic resistance.

Bandwidth

Bandwidth is defined as the band of frequencies between two points on either side of resonant frequency where impedance falls to $\frac{1}{\sqrt{2}}$ 2 times of value at resonance.

Impedance of the LCR parallel circuit is given by

$$
Z = \frac{(R + j\omega L)\frac{1}{j\omega C}}{(R + j\omega L + \frac{1}{j\omega C})}
$$

or

$$
Z = \frac{(R + j\omega L)}{j\omega C\left(R + j\omega L + \frac{1}{j\omega C}\right)}
$$

$$
Z = \frac{(R + j\omega L)}{(1 - j\omega L)^2}
$$

 $(j\omega RC - \omega^2 LC + 1)$

jωRC – ω²LC + 1)

 $\omega RC - \omega^2 LC +$

or

where $R \ll \omega L$ then R can be neglected from the above equation.

$$
Z = \frac{j\omega L}{j\omega RC + (1 - \omega^{2} LC)}
$$

Z

Taking modulus on bothsides of the above equation, we get

$$
|Z| = \frac{\omega L}{\sqrt{\omega^2 R^2 C^2 + (1 - \omega^2 LC)^2}}
$$
 (1)

Multiplying numerator and denomination of eqn (1) with $\frac{1}{10}$ ωRC , we get

$$
|Z| = \frac{\omega L x \frac{1}{\omega RC}}{\frac{1}{\omega RC} \sqrt{\omega^2 R^2 C^2 + (1 - \omega^2 LC)^2}}
$$

L

or

$$
|Z| = \frac{\overline{RC}}{\frac{1}{\omega RC} \sqrt{\omega^2 R^2 C^2 + (1 - \omega^2 LC)^2}}
$$

or
$$
|Z| = \frac{Z_0}{\frac{1}{\omega RC} \sqrt{\omega^2 R^2 C^2 + (1 - \omega^2 LC)^2}} \qquad (\because Z_0 = \frac{L}{RC})
$$

or
$$
|Z| = \frac{Z_0 \omega RC}{\sqrt{\omega^2 R^2 C^2 + (1 - \omega^2 LC)^2}}
$$

but
$$
|Z| = \frac{Z_0}{\sqrt{C}}
$$

$$
\frac{Z_0}{\sqrt{2}} = \frac{Z_0 \text{ or } C}{\sqrt{\omega^2 R^2 C^2 + (1 - \omega^2 LC)^2}}
$$

$$
\frac{1}{\sqrt{2}} = \frac{\text{ or } C}{\sqrt{\omega^2 R^2 C^2 + (1 - \omega^2 LC)^2}}
$$

or

or
$$
\sqrt{\omega^2 R^2 C^2 + (1 - \omega^2 LC)^2} = \omega RC \sqrt{2}
$$
 (2)

squaring on both sides of equ(2), we get

$$
\omega^2 R^2 C^2 + (1 - \omega^2 LC)^2 = 2\omega^2 R^2 C^2
$$

or
$$
(1 - \omega^2 LC)^2 = 2\omega^2 R^2 C^2 - \omega^2 R^2 C^2
$$

or
$$
(1 - \omega^2 LC)^2 = \omega^2 R^2 C^2
$$

taking square root on both sides of the above equation, we get

$$
1 - \omega^2 LC = \pm \omega RC
$$

or

$$
\omega^2 LC \pm \omega RC - 1 = 0
$$
 3

Eqn (3) is a quadratic equation in ω and will yield two values. The two values ω_1 and ω_2 and they can be obtained as follows.

$$
= \frac{\pm RC \pm \sqrt{R^2C^2 + 4LC}}{2LC}
$$

$$
= \frac{\pm RC}{2LC} \pm \frac{\sqrt{R^2C^2 + 4LC}}{2LC}
$$

2 2 $R \mid \mathbb{R}^2 \mid 1$ 2L $\sqrt{4L^2}$ LC $=\frac{\pm R}{2L} \pm \sqrt{\left(\frac{R^2}{4L^2} + \frac{1}{LC}\right)}$

or

or

$$
= \frac{\pm RC}{2LC} \pm \sqrt{\left(\frac{R^2C^2}{4L^2C^2} + \frac{4LC}{4L^2C^2}\right)}
$$

or

as $R \ll \omega L$, therefore 2 2 R 4L can be ignored from the above equation, we get

R 1 2L LC ± = ± -------------------- (4)

Let $\frac{R}{\sigma}$ $\frac{R}{2L} = \alpha$, and we know that $\sqrt{\frac{1}{LC}} = \omega_0$ LC $=\omega_0$, substituting these values in the equ (4) we get

$$
= \pm\,\alpha\pm\omega^{\vphantom{2}}_0
$$

Two roots can be written as follows

 $\omega_2 = \omega_0 + \alpha$ and $\omega_1 = \omega_0 - \alpha$ (since angular frequency can not be negative)

Therefore Bandwidth ∴ $\Delta \omega = \omega_2 - \omega_1$

substituting ω_1 and ω_2 values in the above equation, we get

$$
\Delta \omega = \omega_0 + \alpha - (\omega_0 - \alpha)
$$

or $\Delta \omega = \omega_0 + \alpha - \omega_0 + \alpha$
or $\Delta \omega = 2\alpha$ (5)
but $\alpha = \frac{R}{2L}$
therefore $\Delta \omega = \frac{2R}{2L}$
or $\Delta \omega = \frac{R}{L}$
or $\Delta \omega = \omega_2 - \omega_1 = (2\pi f_2 - 2\pi f_1) = \frac{R}{L}$
or $2\pi (f_2 - f_1) = \frac{R}{L}$
 $(f_2 - f_1) = \frac{R}{2\pi L}$
Therefore bandwidth $\Delta f = (f_2 - f_1) = \frac{R}{2\pi L}$ (6)

Quality Factor (Q – Factor)

When voltage V is applied to the parallel LCR circuit, the current flowing through the circuit at resonance is given by

$$
I = \frac{V}{r_d} \qquad \qquad \text{---} \qquad (1)
$$

Where r_d is dynamic resistance = $\frac{L}{R}$ RC

Substituting r_d value in eqn (1), we get

$$
I = \frac{V}{L/RC}
$$

$$
or \tI = \frac{VRC}{L}
$$

from above equation $V = \frac{IL}{R}$ RC $=\frac{12}{100}$ ----------- (2)

Voltage across the capacitor $= V_C$

Voltage across the inductor $= V_L$

From fig (4) voltage across capacitor (V_C) = voltage across inductor (V_L) = applied voltage (V) (Since the capacitor and the inductor are parallel to the applied voltage)

Voltage across capacitor

$$
V = I_C x \frac{1}{\omega_0 C}
$$

 $I_c = V \omega_0 C$ ---------- (3)

Substituting V value from eqn(2) in eqn(3) we get

$$
I_C = \frac{IL}{RC} \omega_0 C
$$

or

$$
I_C = \frac{IL \omega_0}{R}
$$

Voltage across the inductor is $V = I_L x \omega_0 L$

or
$$
I_{L} = \frac{V}{\omega_{0} L}
$$
 -------(4)

substituting V value from eqn (2) in eqn (4) , we get

$$
I_{L} = \frac{IL}{RC} x \frac{1}{\omega_{0}L}
$$

or
$$
I_{L} = \frac{I}{RC\omega_{0}} \quad \dots \dots \dots \tag{5}
$$

The Q-factor is defined as the magnification of the current at resonance

 $Q = \frac{I_C}{I} = \frac{I_L}{I}$ I I $=\frac{1}{1}C =$ From eqn(4) we have I R $=\frac{0}{x}$ $\therefore \qquad \frac{I_c}{I} = Q = \frac{\omega_0 L}{R}$ I R $= Q = \frac{\omega_0 L}{R}$ ------------- (6)

From eqn (5) we have $\frac{I_L}{I}$

From eqn (5) we have
$$
\frac{I_{L}}{I} = \frac{1}{\omega_{0}RC}
$$

$$
\therefore \qquad \frac{I_{L}}{I} = Q = \frac{1}{\omega_{0}RC} \qquad \qquad \text{---} \qquad (7)
$$