Question Bank F	or Mar 2022 (Summer) Exa	mination
Subject Code :_81693		ject Name : Statistics
	Paper XIV (Statistical Inference II)	
Q. 1. Choose the most correct	alternative	(1 mark each)
 Power curve is a curve obtained bin a) probability of TypeIerre b) probability of TypeIIerre c) Probability of rejecting time d) Probability of accepting 	for ror he null hypothesis at θ_1	
2. Let α denote the size of a test, the null hypothesis against simple a	Iternative hypothesis?	exists for testing simple
a) UMP test of size αc) UMP test of size (1-α)	b) MP test of size α d) Both a and b	
c c c c c c c c c c	d) Doth a and b	
3. If Λ denotes the likelihood ratio test		rity conditions which of the
following is the asymptotic distribution a) Chi square distribution	b) Normal distribution	1
c) Gamma distribution	d) t-distribution	
4. The critical region of a likelihood	ratio test criterion is always	
a) Left tailed	b) Right tailed	
c) Two tailed	d) either (b) or (c)	
5. Which one of the following statesI) A UMP test always exists.II) Null hypothesis is simple if iIII) Power of a test is the probability	t specifies the underlying distrib	
a)Statement I and II	b) Statement II and III	[
c) Statement III	d) Statements I and III	
6. The LR-test for testing $H_0: \mu = \mu$ population leads to	₀ against $H_1: \mu \neq \mu_0$ based on s	sample from normal
a) One tailed t- test	b) Two tailed t-test	
c) Two tailed F- test	d) One tailed F- test.	
7. Which one of the following non-sample?	parametric tests is applicable fo	or a randomness of
1	n test c) K-S test	d) Run test.
 8. The most preferred confidence in a) with shortest width and la b) with largest width and lar c) based on sufficient statistic d) both (a) and (b) 	rgest confidence coefficient gest confidence coefficient	e an interval

9. In SPRT, decision about the null hypothesis is taken after.....

a) fixed number of observations

b) each successive observation

c) at least three observations

d) only one observation

10. If $\alpha = P(Type \ I \ error)$ and $\beta = P(Type \ II \ error)$, then in SPRT lower and upper cut off points (A and B) are given by....

a)
$$B = \frac{\alpha}{1-\beta}$$
 and $A = \frac{1-\alpha}{\beta}$
b) $B = \frac{\alpha}{1-\beta}$ and $A = \frac{\beta}{1-\alpha}$
c) $B = \frac{\beta}{1-\alpha}$ and $A = \frac{1-\alpha}{\beta}$
d) $B = \frac{\beta}{1-\alpha}$ and $A = \frac{1-\beta}{\alpha}$.

11. In SPRT of strength (α , β)= (0.02, 0.03) the stopping bounds (A, B) are given by... a) $\left(\frac{97}{3}, \frac{2}{98}\right)$ b) $\left(\frac{97}{2}, \frac{3}{98}\right)$ c) $\left(\frac{98}{3}, \frac{2}{98}\right)$ d) $\left(\frac{98}{2}, \frac{3}{97}\right)$

12. Which of the following statements about SPRT are true?

- I) Sample size (n) is fixed
- II) P(Type I error) = α and P(Type II error)= β are fixed.
- III) P(Type II error)= β is minimized for fixed α .

a) Only statement (I) is true.	b) Only statement (II) is true.
c) Only statement (III) is true.	d) All three statements are true.

13. The likelihood ratio test statistic for testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$ based on a sample of size n from normal population N (μ , σ^2) leads to....

a) χ^2_{n-1} distribution.	b) χ^2_{n-2} distribution.
c) t_{n-1} distribution.	d) t_{2n-1} distribution.

14. Which of the following is most appropriate test for testing simple H₀ against simple H₁?
a) MP level α test
b) MP level (1-α) test
c) UMP level (1-α) test
d) Likelihood Ratio level (1-α) test

15. If a hypothesis is rejected at the level of significance 0.025, then it

a) must be rejected at any level	b) must be rejected at the 0.01 level
c) must be rejected at the 0.05 level	d) must not be rejected at any other level

16. A sample of one observation, say X is taken from the distribution f(x) = θe^{-xθ}, x>0 for testing H₀: θ = 1 against H₁: θ=2. The hypothesis H₀ is rejected if X≤0.5, then the power of a test is....
a)1-e^{0.5}
b) 1-e⁻¹
c) 1-e
d) e

17. If random variable X has $N(\mu,\sigma^2)$ -distribution then which of the following is a simple null hypothesis?

a) $|\mu|=0$ b) $\mu=10$ c) $\sigma^2=16$ d) $\mu=10, \sigma^2=16$

18. A sample of size 144 $s^2=36$ then 95% conf	from N(μ , σ^2) gives the idence interval for μ is	-	nd sample variance
a) (9.02, 10.98)	b) (9.02, 9.98)	c) (10.02, 10.98)	d) (9.20, 10.98)
b) Neyman Pearso	pjecting H_0 when H_1 is to n test leads to a most po- pjecting H_0 when H_0 is t	owerful test.	
20. The critical region of t a) Two tailed	wo sample Run test is. b) Right tailed		ther (a) or (b) or (c)
21. For exponential distribution simple? a)H: $\theta < 4$	ibution with parameter b) H: $\theta = 2 $		llowing hypothesis is d) None of these
22. Which of the followin (I) NP-Lemma provid (II)Non-parametric tes	g statement/s is/are true	e? ful.	st.
23. Which of the followin a) Run test	g non-parametric test is b) K-S test	s applicable for paired s c) Sign test	samples? d) Median test
24. If we are interested i certain brand of cigare a) Point estimation c)Testing of hypot	ettes then this is a probl b) In		ge nicotine content of
25. The LR test for testing from N(μ , σ^2) where μ , a) χ^2 -test with n d. c) F-test	is known leads to: f. b) χ	$\sigma \neq \sigma_0$ based on random ² -test with n-1 d. f. formal test	sample of size n taken
26. Which of the followin two attributes? a) Median test b) I			est of independence of -S test
b) 4.4 and 15.7 are	nfidence interval is 11. 90% confidence limits μ does not lie in the int	3. s of μ.	t?

		pe II error	r of a test for testin	ng H ₀ : $\theta = \theta_0$	against H_1 and $\theta < \theta_0$
then $1 - \beta(\theta)$ a) Power f	-		b) Power of the	test at θ	
c) Both (a)			d) Neither (a) no		
29 Among the fol		ts, false st	, , , ,	. ,	
I) SPRT is a s	equential test				
II) For large s	amples median t	est leads t	o chi-square test		
,	st is used for pai		•	-	
a) II and	III b) I	and II	c) I, II, II	1	d) III
30. K-S test for si	ngle sample is re	eferred to	as		
	randomness		b) A test of good	ness of fit	
c) Both (a)) and (b)		d) Neither (a) no	r (b)	
31. Following is the arrangement of male (M) and female (F) in a queue MMFMFFMFFMFFFMMMFFFM					
Total numbers	s of runs in this o	queue are.			
a) 09	b) 01	c) 20	d) 11		
32. Some stateme	nts are given bel	low:			
	e size of sample		1		
· · · · · · · · · · · · · · · · · · ·	-	be tested	by using run test,		
III) UMP tests	•	•			
Among the above false statement is					
a) III	b) II	c) I	d) IV		
 33. If X₁, X₂,, X_n is a random sample of size n from exponential distribution with parameter θ then interval estimate of θ is obtained by using a) Normal distribution b) t-distribution c) Chi-square distribution d) F-distribution 					
 34. T(X, θ) which is a function of random sample X = (X₁, X₂,,Xn) and parameter θ. The distribution of T(X, θ) is independent of θ and is used to find C. I. of θ is called as a) statistic b) likelihood function c) pivot d) sample space 					
H ₁ is the prob a) Reject I		e	g null hypothesis I b) Reject H ₁ whe d) Reject H ₀ whe	en it is true	lternative hypothesis
36. Which one of the following tests will be used only for two independent samples?					
,	Vhitney Test	b) K-S	– Test		
c) Sign – T	l'est		d) t – Test		

- 37. If a statistical test T for testing simple null hypothesis against simple alternative is at least as powerful as any other test then it is known as....
 - a) UMP test b) MP test c) LR test d) None of them

38. Which of the following Non-parametric test utilizes the empirical distribution function?

- a) Median test b) Wilcoxon's signed rank test
- c) Wald-Wolfwitz run test d) Kolmogorov -Smirnov test
- 39. If X₁, X₂, ..., X_n is a random sample of size *n* from N(μ , σ_0^2), where σ_0 is known but μ is unknown then, with usual notations, what is(are) pivotal quantity(quantities) to find C. I. for μ ?
 - a) $\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma_0}$ b) $\frac{\sqrt{n}}{s}\overline{X}$ c) Both a) and b) d) None of the above
- 40. If $X_1, X_2, ..., X_n$ is a random sample of size n from N(μ, σ^2), where μ is known, then what is(are) pivotal quantity(quantities) to find C. I. for σ^2 ?
 - a) $\sum_{i=1}^{n} \left(\frac{X_i \overline{X}}{\sigma}\right)^2$ b) $\sum_{i=1}^{n} (X_i - \mu_0)^2$ c) Both a) and b) are true d) None of the above is true
- 41. A random sample of size n individuals is selected from a population to study some population characteristic. If X individuals are possessing this characteristic in this sample of size n, then with usual notations, what is $(1-\alpha)$ level confidence interval for population proportion P of this characteristic for large n?

a)
$$\left(\frac{X}{n} - \frac{Z_{\alpha/2}}{\sqrt{n}} \sqrt{\frac{X}{n} \left(1 - \frac{X}{n}\right)}, \frac{X}{n} + \frac{Z_{\alpha/2}}{\sqrt{n}} \sqrt{\frac{X}{n} \left(1 - \frac{X}{n}\right)}\right)$$

b) $\left(\frac{X}{n} - \frac{t_{(n-1, \alpha/2)}}{\sqrt{n}} \sqrt{\frac{X}{n} \left(1 - \frac{X}{n}\right)}, \frac{X}{n} + \frac{t_{(n-1, \alpha/2)}}{\sqrt{n}} \sqrt{\frac{X}{n} \left(1 - \frac{X}{n}\right)}\right)$

- c) Both a) and b).
- d) None of the above.
- 42. If (L(X), U(X)), where L(X) and U(X) are real valued functions of X, L(X) < U(X) < ∞ , is confidence interval for θ based on random sample X then what is length of this confidence interval?
 - a) U(X) b) (U(X) + L(X))/2 c) U(X) L(X) d) (U(X) L(X))/2
- 43. If X₁, X₂, ..., X_n is a random sample of size n from N(μ , σ_0^2), where μ is unknown and σ_0 is known. Then with usual notations, what is (are) (1– α) level confidence interval(s) for μ ?
 - a) $\left(\overline{X} \frac{\sigma_0}{\sqrt{n}} Z_{\alpha/2}, \overline{X} + \frac{\sigma_0}{\sqrt{n}} Z_{\alpha/2}\right)$ b) $\left(\overline{X} \frac{s}{\sqrt{n}} t_{(n-1,\frac{\alpha}{2})}, \overline{X} + \frac{s}{\sqrt{n}} t_{(n-1,\frac{\alpha}{2})}\right)$ c) Both a) and b) are true. d) None of the above is true

Q.2. Long answer questions (8 marks each)

- 1. Define power of test. State and prove Neyman-Pearson Lemma
- 2. Define Most Powerful Test, Uniformly Most Powerful Test

If X \geq 2 is the critical region for testing H₀ : θ =2 against H₁ : θ =1 based on the sample from exponential distribution with parameter θ , then obtain α , β and power of the test.

- 3. Obtain $100(1-\alpha)\%$ confidence interval for difference between two population means based on two independent large samples of size n_1 and n_2 .
- 4. Define UMP test of size α . Obtain UMP test of size α for testing $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$ when a sample of size n is drawn from exponential population with parameter θ .
- 5. Define MP and UMP test. Assuming X has $N(\mu, 4)$ distribution, obtain UMP test of level 0.05 to test $H_0: \mu=7$ against $H_1: \mu<7$.
- 6. Use N-P Lemma to obtain MP critical region to test $H_0 : \mu = \mu_0$ against $H_1 : \mu = \mu_1 (\mu_1 > \mu_0)$ based on sample of size n from $N(\mu, \sigma^2)$ when σ^2 is known. Obtain power of the test.
- 7. Derive SPRT of strength (α , β) to test H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1$ ($\theta_1 > \theta_0$) based on sequence of observations from B(n, θ) population.
- 8. Define SPRT. Derive SPRT of strength (0.05, 0.02) to test $H_0: \theta=2$ against $H_1: \theta=3$ based on sequence of i. i. d. observations from exponential population with mean θ .
- 9. Describe the procedure of SPRT. Derive SPRT of strength (α , β) to test H₀ : $\mu = \mu_0$ against H₁ : $\mu = \mu_1$ ($\mu_1 > \mu_0$) based on sequence of observations from N(μ , 1) distribution.
- 10. Explain the procedure of likelihood ratio test. Derive LRT for testing $H_0: \sigma^2 = \sigma_0^2 Vs$ $H_1: \sigma^2 \neq \sigma_0^2$ based on sample of size n from N(μ, σ^2) population.
- 11. Derive LR test for testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ based on sample of size n drawn from N(μ , σ^2) distribution considering cases i) σ^2 is unknown and ii) σ^2 is known.
- 12. Obtain $100(1-\alpha)$ % confidence interval for difference between two population proportions based on two independent large samples.
- 13. Obtain 100(1- α)% confidence interval for difference between means based on two independent small samples of size n_1 and n_2 from N(μ_1 , σ^2) and N(μ_2 , σ^2) populations.
- 14. Describe the procedure of Run test for randomness and two samples K-S test.
- 15. Describe the procedure of Median test and Mann-Whitney U test.
- 16. Explain Run test and Mann-Whitney U test for two samples
- 17. Explain procedure for sign test and signed rank test.

Q.3. Short answer questions (4 marks each)

- 1. Describe procedure to obtain interval estimator of population median using order statistics
- 2. If X has p. d. f. $f(x) = \frac{2x}{\theta^2}$; $0 \le x < \theta$. Obtain Type I error and power of test for testing $H_0: \theta=4$ against $H_1: \theta=5$ if C. R. $\{x/x>4\}$
- 3. Obtain UMP test for testing $H_0: p=1/2$ against $H_1: p>1/2$ based on sample of size n from B(1, p) considering level of significance 0.1
- 4. Obtain $100(1-\alpha)\%$ confidence interval for population median based on large sample.
- 5. Obtain 90% confidence interval for population proportion based on large sample of size n
- 6. Define the terms; size of test, power function, pivotal quantity and critical region
- 7. Obtain UMP test for testing $H_0: \theta=2$ against $H_1: \theta=1$ based on sample of size n from $B(15, \theta)$
- 8. Obtain 95% C. I. for mean μ of N(μ , σ^2) population based on sample of size 100 when σ^2 is unknown.
- 9. Define the terms; confidence coefficient, MP critical region, UMP test and p-value.
- 10. Define pivotal quantity and power of the test. Differentiate between parametric and nonparametric tests
- 11. Define; Simple and composite hypothesis, Critical value, Confidence interval and Level of significance
- 12. Suppose 'X' has Bernoulli distribution with probability of success θ . It is proposed to test $H_0: \theta=0.5$ against $H_1: \theta=0.3$ based on sample of size 5. The C. R. is $\Sigma Xi > 3$. Find probabilities of Type I and Type II errors. Also find power of test.
- 13. Obtain $100(1-\alpha)$ % confidence interval for difference between means based on samples from two independent normal populations
- 14. Obtain likelihood ratio test for testing H₀ : μ=μ₀ against H₁ : μ≠μ₀ when a sample is drawn from N(μ, 625) population.
- 15. Obtain UMP test for testing H₀ : λ =2 against H₁ : λ >3 based on sample of size n from P(λ) population. Use level α =0.02.
- 16. Derive SPRT of strength (0.05, 0.02) for testing $H_0: \lambda=2$ against $H_1: \lambda=3$ when observations are drawn sequentially from $P(\lambda)$ population.
- 17. Obtain SPRT of strength (α , β) for testing H₀ : $\lambda = \lambda_0$ against H₁ : $\lambda = \lambda_1$ when observations are drawn from P(λ) population.
- 18. Obtain SPRT of strength (α , β) for testing H₀ : P=P₀ against H₁ : P=P₁ when observations are drawn from B(n, P) population.
- 19. Derive SPRT of strength (α , β) for testing H₀ : θ =2.5 against H₁ : θ =3.5 in case of observations drawn from exponential distribution with parameter θ .

- 20. Derive MP test for testing $H_0: \lambda=2$ against $H_1: \lambda=1$ when sample of n observations is drawn from $P(\lambda)$ distribution.
- 21. Derive SPRT of strength (α , β) for testing H₀ : θ =2 against H₁ : θ =3 in case of observations drawn from exponential distribution with mean θ .
- 22. Write procedure of sign test for single sample.
- 23. Describe the procedure of Kolmogrov -Smirnov test for two independent samples.
- 24. Describe the procedure of one sample Wilcoxon's signed rank test.
- 25. Explain the procedure of single sample Kolmogrov -Smirnov test.
- 26. Explain procedure for Mann-whitney U test.
- 27. Explain the test for randomness.
- 28. Explain non-parametric test procedure for testing goodness of fit for one sample.
- 29. Explain median test for two independent samples
- 30. Explain advantages of non-parametric methods over parametric methods.
- 31. Explain likelihood ratio test and sequential probability ratio test procedures.
- 32. Derive UMP test of size α for testing $H_0: \theta = \theta_0$ against $H_1: \theta < \theta_0$ based on r. s. of size n from exponential distribution with parameter θ .
- 33. Obtain $100(1-\alpha)\%$ confidence interval for mean of exponential distribution with mean θ .
- 34. Explain in brief general procedure of determining confidence interval.
- 35. Explain in brief concept of p-value.
- 36. Describe likelihood ratio test and state its properties.