Shri Swami Vivekanand Shikshan Sanstha Kolhapur's DATTAJIRAO KADAM ARTS, SCIENCE & COMMERCE COLLEGE, ICHALKARANJI DEPARTMENT OF STATISTICS Class:-B.Sc-I							
	Paper-II (Elementary Probability Theory)						
	Qu	estion Bank					
0.1)	Choose a correct alternative for	each of following.	•••••				
	1) If A and B are two events, the probability of occurrence of both A and B is given						
	by						
	(A) $P(AUB)$ (B) $P(A \cap B)$	(C) $P(A) + P(B)$	(D) P(A) - P(B)				
2)	A ticket is drawn from 25 ticket	ts numbered 1 to 25. I	Define an event as: the number				
	drawn is odd number. The number	er of elements in this ev	vent is				
	(A) 11 (B) 12	(C) 13	(D) 25				
3)	If A and B are events such that	P(A) = 0.6, P(B) =	0.5 and $P(A \cap B) = 0.3$ then				
	$P(\overline{A} \cup B)$ is						
	(A) 0.4 (B) 0.8	(C) 0.2	(D) 0.3				
4)	If $P(A) = 0.7$, $P(B) = 0.8$, then a	most appropriate lower	and upper possible values of				
	$P(A \cap B)$ are						
	(A) (0.1, 0.2) (B) (0.5, 0.7)	(C) (0, 0.7)	(D) (0, 0.8)				
5) Which of the following is the power set corresponding to sample space $\Omega = \{1, \dots, N\}$							
	$(A) \{\{\}, \Omega\}$	(B) $\{\{1\},\{2\}\}$	2}}				
	(C) $\{\{1\}, \{2\}, \{1, 2\}\}$	$(D)\{\{\},\{1\}$,{2},{1,2}}				
6)	If A and B are any two events, the	ten $P(A \cup B)$ is equal to)				
	(A) P(A) + P(B)		(B) $P(A) + P(B) - P(A \cap B)$				
	(C) $P(A) + P(B) - P(A \cup B)$	(D) $P(A) +$	$P(B) + P(A \cap B)$				
7)	If A and B are two events defin		ce $Ω$ of a random experiment,				
	then occurrence of A but not B is						
	(A) $\overline{A} \cap B$ (B) $A \cup \overline{B}$ (C) $A \cup B$ (D) $A \cap \overline{B}$						
8)	An event consisting of these elen	nents which are not in A	A is called				
	(A) Simple event	(B) Compo	(B) Compound event				
	(C) Complementary event	vevent					
9)	If a sample space Ω has n element	ts then its power set w	ill have				
		nents (C) n elements	(D) 2n elements				
10)	An event containing only one ele						
	(A) Sure Event	(B) Imposs					
	(C) Compound Event	(D) Elemen	•				
11)	The probability of getting 5 Sund	lays in the month of Ma	ay is				

(A) 2/7	(B) 3/7	(C) 1/7	(D) 6/7				
10. 4 1. 5							
	12) A and B are two events, then probability of at least one of them will occur is given						
by	on law of nuch shility	(D) additio	n law of no bability				
· · · -	on law of probability		n law of probability				
	(C) Conditional probability(D) none of these13) Power set of a sample space having 3 sample points contains Subsets of						
sample space.	i sample space naving	5 5 sumple point					
(A) 3	(B) 6	(C) 8	(D) 10				
· · ·	10 men, 6 are gradua		3 men are selected at random.				
÷ -	group consist of all g						
(A) 1/6	(B) 0.1	(C) 0.2	(D) none of these				
15) If the letters of	the word SUN are an	ranged at random,	the probability that the letter U				
gets the middle	position is						
(A) 2/3	(B) 1/6	(C) 1/3	(D) 5/6				
16) If a coin tossed	3 times the sample sp	ace has point	S.				
(A) 2	(B) 3	(C) 8	(D) 16				
	-	he probability that	t at least one of them will occur				
is denoted by							
(A) $P(A)$ or $P(E)$	5)	(B) $P(A) +$					
(C) $P(AUB)$		(D) $P(\overline{A})$					
	$rac{1}{1}$ iny two events then the $rac{1}{1}$	-					
(A) $P(A \cap B) \le I$ (C) $P(A \cup B) \le I$		(B) P(A∩H (D) All of					
			a throw of a pair of fair dice				
is	or getting the sum	greater than y in	a anow of a pair of fair diec				
(A) 1/36	(B) 2/9	(C) 1/6	(D) 5/9				
	· · /		oruary of a leap year is				
(A) 2/7	(B) 1/7	(C) 5/29	(D) 5/52				
	ce corresponding to t	he experiment "T	hree seeds are planted and total				
number of seed	s germinated are recon	rded after a week"	is				
(A) {0, 3}	(B) {0, 1, 2, 3	} (C) {1, 2, 3]	(D) [0, 3]				
23) Which of the	following pairs is a	pair of mutually	exclusive events in drawing a				
single card from	n a pack of 52 cards?						
(A) a heart and	a queen	(B) an even	n number and a spade				
(C) a club and a			and an odd number				
	-	-	from a bag containing 6 red, 8				
	v and 1 green ball is						
(A) 1/25	(B) 0	(C) 1	(D) 14/25				

25) If A and B are two events such that $A < B$, then								
(A) P((A) $P(A) = P(B)$ (B) $P(A) \ge P(B)$ (C) $P(A) \le P(B)$ (D) None of these							
26) If A ^C i	26) If A^{C} is the complementary event of A, then $P(A^{C})$ is							
(A) 1	(B) 0	(C) P(A)	(D) 1- P(A)					
27) A set	27) A set is called doubleton, if its cardinality is							
(A) 2		(C) ≤ 2	(D) ∞					
28) A box	28) A box has 4 red and 4 blue balls. Five balls are selected at random, then probability							
	ing at least 1 blue ball is		· · · ·					
(A) 1	(B) 1/2	(C) 0	(D) None of these					
29) I: A at	nd B are mutually exclusive							
	$(A \cap B) = 0$							
	and B are independent ev	ents. Then						
	→II (B) I⇒III	(C) III⇒I	(D) All of the above					
× /			and $P(B) = 0.8$. Which of the					
	ing statement is always tr							
	$(A \cup B) = 1$) B) = 0. 16					
. ,	$A \cap B \le 0.2$	(D) None	,					
	(1 + 12) = 0.2 (1 + 12) = 0.2 (1 + 12) = 0.2	· · ·						
(A) 1/			(D) none of these					
× /	and B be two events defin							
	A (B) $A \cap B = 0$							
	A then $P(B A)$ is	ψ (C) $\Pi < D$	(D) none of these					
(A) 0	(B) 1	(C) P(A)/P(B)	(D) P(B)/P(A)					
	y event A, $P(\Omega/A)$ is							
		 (C) P(A)	(D) $\mathbf{P}(1/\mathbf{A})$					
~ /	(B) = 1/3, P(B) = 1/4, P(A)							
	$\begin{array}{c} 1 \\ 1 \\ 3 \\ 4 \\ (B) \\ 1 \\ 8 \end{array}$							
		. , . ,	1 then P(A B) is equal to					
(A) O			(D) P(A)					
	nd B are mutually exclusion							
(A) P(, , , , ,		(D) Zero					
	$(B^{C}) = 0.3, P(B) = 0.4$	and A and B are I	mutually exclusive events then					
(A) 0.	3 (B) 0.4	(C) 0.12	(D) 0.5					
	n event A, $P(A A)$ is							
(A) O	ne (B) Zero	(C) P(A)	(D) Not determined					
40) If <i>A</i> <	B then $P(A B)$ is							
(A) 0	(B) 1	(C) $P(A)/P(B)$	(D)P(B)/P(A)					

	two events such that F events then the value		and $P(AUB) = 0.6$. If A and
			$(\mathbf{D}) 0.2$
(A) 0.3	(B) 0.6	(C) 0 (A) $- 0.2 P(D) = 0$	(D) 0.2 A then $\mathbf{P}(\mathbf{A} \cap \mathbf{P}) =$
			.4 then $P(A \cap B) = \dots$
(A) 0.3		(C) 0.7	(D) 0
	n from a pack of card	s. If it is a picture c	ard, the probability that it is a
king is \dots	$(\mathbf{D}) \ 1/4$	(0) 1/10	
(A) $1/3$	(B) 1/4	(C) $1/12$	(D) None of these
	defined on the sample	e space Ω and $P(A)$	> 0 then following statement
is false. $(A) P(P(A) > 0$		$(\mathbf{D}) \mathbf{D}(\mathbf{O} \mathbf{A})$	1
$(A) P(B/A) \ge 0$		(B) $P(\Omega / A) =$	
	= P(B/A) + P(C/A)	(D) None of	these
45) For an event A,			
	(B) $P(\bar{A})$	(C) 0	(D) 1
46) If $A < B$ then P			
(A) 0		(C) P(B)	(D) <u>1</u>
47) If A and B are e	exclusive events and P	(A) = 0.3, P(B) = 0.3	4 then $P(B)=$
(A) 0.7	(B) 0.5	(C) 0.6	(D) 0
48) If A and B are e	exclusive events and P	(A) = 0.2, P(B) = 0.2	.5 then $P(\bar{A} \cup \bar{B}) = \dots$
(A) 0.2	(B) 0.3	(C) 0.4	(D) 0.7
49) If $P(A) = 0.5$, P	P(B) = 0.6 and P(B/A) =	= 0.9 then $P(A \cap B)$	=
(A) 0.3	(B) 0.4	(C) 0.45	(D) 0.54
50) The probability	that A card drawn from	om a pack of cards	is a red card given that it is a
king is			
(A) 1/4	(B) 1/2	(C) 1/13	(D) 1/12
51) A function which	ch generates probabilit	ies is	
(A) Mean		(B) Variance	
	generating function	(D) cann't be	e defined
	v. X is $P(s)$ then the p.	-	$(\mathbf{D}) \mathbf{P}(2_{\mathbf{n}})$
(A) s ³ P(s) 53) Let X be a r.v. 1		(C) $P(s+3)$	(D) $P(3s)$
(A) $aV(X)$		(C) $a^2V(X)$	(D) 0
	function of a discrete		
(A) Non increas	ing (B) Non decreas	sing (C) Not cons	tant (D) Not exponentail
	ndependent random va		
(A) P(X)	(B) P(Y)	(C) P(X, Y)	(D) None of these
	n of a number of a thro (P) $\frac{7}{2}$	_	
(A) 3 57) If X is discrete	(B) 7/2 random variable with 1	(C) 1/6 mean F(X) then F[]	(D) 140 $X - F(X)^{12}$ is
(A) Mean	(B) Variance	(C) S.D	(D) Raw moment
	ble is adefined o	· ,	

(A) Probability (B) Function	(C) Constant (D) Variable				
59) If X & Y are two independent random	variables then the Probability generating				
function of X+Y is					
(A) $P_x(s) \cdot P_y(s)$	(B) $P_x(s) + P_y(s)$				
(C) $P_x(s) - P_y(s)$	(D) None of these				
60) The value of joint distribution function F(x					
-	$(D) -\infty \& 0$ (D) 0 & 1				
61) A random variable X is said to be discret					
points					
(A) Finite	(B) Countably infinite				
(C) Finite or countably infinite	•				
62) If X is a discrete r.v., the expected value o	•				
(A) Probability distribution function					
(C) Probability generating function					
63) The p.g.f. of discrete r.v. X is $0.5 + 0.3S +$	· · · · · · · · · · · · · · · · · · ·				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
64) If X takes value 1, 2 with $P(X=1) = 0.2$ and					
(A) 0.5 (B) 0.1 (C) 0	(D) 1				
65) For the following distribution					
$\mathbf{X}: 0 1 2$					
P(x): k 5k 4k					
The value of k is					
(A) 1 (B) $\frac{1}{2}$ (C) 1					
66) If $P(x)$ is p. m. f. of a discrete r. v. X, then					
	nfinity (D) None of these				
67) If r. v. X takes values -1, 0, 1 with probabi					
takes values with probabilities					
	0.6, 0.4) (D) None of these				
68) From the distribution function we can find					
(A) Mean (B) Median (C) M	Ade (D) None of these				
Q. 2) Long answer questions.					
1) Define i) An event					
ii) Sample Space					
iii) Power set of a sample space					
iv) Mutually exclusive events					
v) Compliment of an event					
2) With usual notation show that,					
i) $P(A\cup B) = P(A) + P(B) - P(A\cap B)$					
ii) $P(A^{c} \cap B) = P(B) - P(A \cap B)$					
3) Define probability measure and prove that	$P(\emptyset)=0$ and $P(A^c) = 1- P(A)$				
4) For two events show that, $P(A \cap B) \leq P(A)$	$\leq P(A \cup B) \leq [P(A) + P(B)]$				
5) Given $P(A) = 3/4$, $P(B) = 5/8$ then show t					
	·				

i) $P(A \cup B) \ge \frac{3}{4}$

- ii) $5/8 \ge P(A \cap B)$
- iii) $3/8 \le P(A \cap B) \le 5/8$
- iv) $1/8 \le P(A \cap B^c) \le 3/8$
- 6) Give an axiomatic definition of probability. Show that conditional probability satisfies the axioms of probability.
- 7) State and prove Baye's theorem.
- 8) State and prove multiplication law of probability.
- 9) State partition of sample space and Baye's theorem. A man is equally likely to choose one of the three routes C_1 , C_2 and C_3 from his house to railway station. The probability of missing the train by the routes C_1 , C_2 and C_3 are 2/5, 3/10, 1/10. He sets out on a day and misses the train. What is probability that the route C_2 was selected?
- 10) A fair coin tossed twice and the events are defined as follows
 - A: Head on the first toss
 - B: Head on the Second toss
 - C: Same face on the both tosses
 - Discuss the pair wise and mutual independence of events A, B and C.
- 11) Define cumulative distribution function. State & Prove properties of distribution function.
- 12) Explain the following terms giving suitable illustrations.
 - i) Random variable
 - ii) Discrete random variable
 - iii) Probability mass function of discrete random variable
 - iv) Distribution function of discrete random variable
- 13) Define probability generating function (p.g.f.) of a random variable X. Then find mean and variance from p.g.f..
- 14) Explain Pearson's coefficients of skewness and kurtosis.
- 15) If a random variable X has the p.g.f. $P_x(s) = \left(\frac{ps}{1-qs}\right)^n$ where p+q=1 and |s| < 1, find the mean & variance of X.

Q. 3) Short answer questions.

- 1) Define i) a-priori definition of probability
 - ii) Axiomatic definition of probability
- 2) If A and B are independent events with P(A) = 1/2 and P(B) = 1/4 then obtain $P(A\cup B)$ and P(A/B).
- 3) If A and B are independent events then show that A^c and B^c are also independent events.
- 4) If A, B and C are mutually independent events then show that A∪B and C are also independent events.
- 5) If A and B are exclusive events then show that

i) P(A/B) = 0 ii) $P(A/B^{C}) = \frac{P(A)}{1-P(B)}$

- 6) Define i) mutually exclusive events ii) Independent events. Give an illustration of each.
- 7) If B⊂A, prove that $P(A \cap B^{c}) = P(A) P(B)$. Hence deduce that $P(B) \le P(A)$.
- 8) Define i) Union of two events
 - ii) Intersection of two events
 - iii) Impossible event
 - iv) Certain event
 - v) Complementary event
- 9) An urn contains 6 blue, 5 white, and 7 red balls. A person draws 4 balls from the box what is probability that among the balls drawn i) two are red and two are blue ii) two are blue and two are white.
- 10) If a fair coin and a die are tossed together. Find i) Sample space ii) P(head on a coin and an even number) iii) P (number > 4).
- 11) If A and B are independent events then show that A and B^c are also independent events.
- 12) If $\Omega = (\omega_1, \omega_2, \omega_3, \omega_4)$, $A = (\omega_1, \omega_2)$, $B = (\omega_2, \omega_3)$, and $C = (\omega_1, \omega_3)$ then discuss about pair wise independence and mutual independence of three events A, B and C.
- 13) If A and B are exclusive events then show that
 - i) P(B/A) = 0 ii) $P(A/A\cup B) = \frac{P(A)}{P(A)+P(B)}$
- 14) If A and B are any two events then prove that $P(A^{C}/B) = 1 P(A/B)$.
- 15) If P(A) = 1/4, P(A/B) = 1/3, P(B/A) = 1/2 then find $P(A/B^{c})$.
- 16) If A and B are independent and P(A) = 1/4 and P(B) = 1/3, Find i) $P(A \cup B)$ ii) $P(A \cup B)$ ii) $P(A \cup B)$.
- 17) Let P be the probability function on sample space $\Omega = (\omega_1, \omega_2, \omega_3)$. Find P (ω_1), P (ω_2) if P (ω_1) = 2 P (ω_2) and P (ω_3) = 1/3.
- 18) If A and B are independent events then show that A^c and B are also independent events.
- 19) Derive the relation between distribution function and probability mass function.
- 20) Construct a discrete random variable on a sample space of tossing of three fair coins.
- 21) Define the following terms
 - i) Probability mass function.
 - ii) Median
 - iii) Mode
- 22) Let $(X = x) = \frac{x+1}{10}$, for x = 0, 1, 2, 3. Verify whether P(X) is probability mass function. If it is so, find the distribution function of X. Also evaluate P(0 < X < 3) and P(X \le 2).
- 23) Define mean & variance of a random variable and prove that $V(X) = E(X^2)$ $[E(X)]^2$

- 24) Define mean & variance of a random variable and find the effect of change of origin and scale on them.
- 25) Define probability generating function (p.g.f.) of a random variable X. What is the effect of change of origin and scale on p.g.f..
- 26) If a and b are constants, prove that
 - i) E(a) = a

ii)
$$E(aX+b) = aE(X) + b$$

iii) $V(aX+b) = a^2V(X)$

27) The probability distribution of X is as follows:

X	K	0	1	2	3	4		
P(X	=x)	k	3k	5k	2k	k		
Find	i) k	ii) l	E(X)	iii) V	/ar(X)	iv) P(X ≥ 2)	v) Mode of X
