DEPARTMENT OF PHYSICS, B.Sc.- I (2018-19, 2019-2020, 2020-2021, 2021-22), (2022-23) | Sr. | Name | Title of | Sem. | | Details of Cross C | utting Issues relevant wi | th | | | |-----|---|--|---|--------------------------|---|---|---|---|---| | No. | of the
Course | Paper | | Name of the Unit | Gender
Awareness | Environmental
Awareness | Professional Ethics | Human Values | | | 1 | B.ScI | PHYSICS | I | Unit-I | | | | | | | | (2018-
19,
2019-
2020,
2020-
2021, | Paper-I DSC- 1
A
MECHANICS-I
0,
0- | | 1.Vectors | | Using vector calculations to optimize resource allocation and minimize waste in environmental conservation efforts. | Encouraging students to
work in teams to solve
vector-related problems,
promoting collaborative
learning and mutual
respect. | Developing critical thinking
and logical reasoning skills
through vector calculations,
promoting analytical thinking. | | | | 2021-22) | | 2.Ordinary
Differential
Equations | | To model and understand population growth, conservation | Encouraging students to
work in teams to solve
complex problems using
ODEs, promoting
collaborative learning
and mutual respect. | Encouraging students to persist in solving complex ODEs, fostering perseverance and resilience in the face of challenges. | | | | | | | | 3.Law of Mot | 3.Law of Motion | Applying laws of motion to analyze and improve performance in women's sports, promoting gender equality and inclusivity. | Using laws of motion to optimize fuel efficiency, reduce emissions, and promote eco-friendly transportation | Emphasizing the importance of accurate measurements and data collection in experiments related to laws of motion, ensuring reliable results | Applying laws of motion to real-world problems, promoting creative thinking and innovative solutions. | | | | | | Unit-II | | | | | | | | | | | 1.Momentum and
Energy | Encouraging
students to
consider diverse
perspectives and
scenarios when
solving
momentum and
energy problems, | Applying concepts of momentum and energy to understand and optimize renewable energy sources, like wind and solar power. | Emphasizing the importance of accurate calculations and data analysis when working with momentum and energy, ensuring reliable results. | Promoting collaborative problem-solving and learning in momentum and energy topics, fostering teamwork and mutual respect. | | | | | | promoting inclusive thinking. | | | | |--------------------------------------|----------------------|----------------------|---|---|--|--| | physics | | 2.Rotational Motion | | Applying rotational motion concepts to optimize sustainable energy solutions, like wind turbines and hydroelectric power. | Encouraging students to follow safety protocols when conducting experiments involving rotational motion, promoting responsible scientific practices. | Promoting collaborative
learning and problem-solving
in rotational motion topics,
fostering teamwork and mutual
respect. | | PHYSICS | I | Unit-III | | | | | | Paper-II
DSC- 2 A
MECHANICS-II | | 1. Gravitation | | Encouraging students to consider the ethical implications of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. | Encouraging students to consider the ethical implications of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. | Highlighting the importance of collaboration and teamwork in scientific research, using examples from the development of gravitational theories and experiments. | | | | 2. Oscillations: | encouraging
students to design
experiments
involving
oscillations that
are accessible and
inclusive for
diverse
participants. | Using oscillation principles to understand and model climate patterns, promoting environmental awareness and responsibility | Encouraging students to consider ethical implications of innovations based on oscillation principles, promoting responsible scientific progress. | Allowing students to explore oscillations through creative expression, like music or art, fostering innovative thinking and self-expression. | | | Paper-II
DSC- 2 A | Paper-II
DSC- 2 A | PHYSICS Paper-II DSC- 2 A MECHANICS-II 1. Gravitation | PHYSICS Paper-II DSC- 2 A MECHANICS-II 1. Gravitation encouraging students to design experiments involving oscillations that are accessible and inclusive for diverse participants. | PHYSICS Paper-II DSC- 2 A MECHANICS-II 1. Gravitation Discreption of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. 2. Oscillations: Discreption of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. Discreption of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. Discreption of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. Discreption of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. Discreption of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. Discreption of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. | 2.Rotational Motion 2.Rotational Motion 2.Rotational Motion 2.Rotational Motion 2.Rotational Motion 2.Rotational Motion PHYSICS Paper-II DSC- 2 A MECHANICS-II 1. Gravitation 1. Gravitation 2. Oscillations: 2. Oscillations: 2. Oscillations: 2. Oscillations: 2. Oscillations: 3.
Oscillations: 4. Oscillations of their are accessible and inclusive for diverse participants. 4. Oscillations of their are accessible and inclusive for diverse participants. 4. Oscillations of their are accessible and inclusive for diverse participants. 5. Oscillations of their are accessible and inclusive for diverse participants. 6. Denouraging students to consider the ethical implications of their research in Gravitation and Mechanics, ensuring responsible innovation and Application of scientific knowledge. 8. Encouraging students to consider the ethical implications of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. 8. Encouraging students to consider the ethical implications of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. 8. Encouraging students to consider the ethical implications of their research in Gravitation and mechanics, ensuring responsible innovation and application of scientific knowledge. 8. Encouraging students to consider the ethical implications of innovation and application of scientific knowledge. 8. Encouraging students to consider the ethical implications of innovation and mechanics, ensuring responsible innovation and mechanics, ensuring responsible innovation and application of scientific knowledge. 8. Encouraging students to consider the ethical implications of their research in Gravitation and mechanics, ensuring responsible innovation and application of scientific knowledge. 8. Encouraging students to consider the ethical implications of their research in Gravitation and mechanics, ensuring responsible innovation and application of scientific kn | | | | | 1. Elasticity: | Allowing students to explore oscillations through creative expression, like music or art, fostering innovative thinking and self-expression. | Applying elasticity concepts to develop sustainable materials, like biodegradable polymers, for environmental benefit. | Emphasizing the importance of accurate modeling and simulation of elastic behavior, ensuring reliable results and safe design. | Promoting collaborative
learning and problem-solving
in elasticity topics, fostering
teamwork and mutual respect. | |---|--|----|--------------------|--|---|---|--| | | | | 2. Surface Tension | Encouraging students to design experiments involving surface tension that are accessible and inclusive for diverse participants. | Applying surface tension concepts to understand and optimize water conservation techniques, like efficient cleaning and irrigation systems. | Emphasizing the importance of accurate measurement and data analysis when studying surface tension, ensuring reliable results. | Allowing students to think creatively when solving surface tension problems, fostering innovative thinking and resourcefulness. | | 3 | PHYSICS- | II | Unit-I | | | | | | | Paper-III
DSC- B
ELECTRICITY
AND
MAGNETISM-I | | 1.Vector Analysis | | Using vector analysis principles to understand and mitigate electromagnetic pollution, promoting environmental responsibility | Emphasizing the importance of accurate modeling and simulation of electromagnetic phenomena using vector analysis, ensuring reliable results. | Encouraging students to think critically when solving vector analysis problems, fostering analytical thinking and problem-solving. | | | | | • | | | | | | | | | 2.Electrostatics | | Using electrostatics principles to develop sustainable energy storage solutions, like supercapacitors, reducing environmental impact. | Emphasizing the importance of following safety protocols when working with electrostatic charges and electric fields, ensuring a safe learning environment. | Promoting collaborative learning and problem-solving in electrostatics topics, fostering teamwork and mutual respect. | (ICHALKARANJI) | 4 | PHYSICS- | II . | Unit-III | | | | | |---|---|------|---|--|--|---|---| | | Paper-IV
DSC- 2B
ELECTRICITY
AND
MAGNETISM-
II | | 1.A.C. Circuits | Encouraging students to design A.C. circuits that are accessible and inclusive for diverse users, promoting universal design principles. | Using A.C. circuit principles to develop sustainable power systems, like renewable energy grids, promoting environmental responsibility. | Encouraging students to consider ethical implications of innovations based on A.C. circuit principles, promoting responsible scientific progress. | Promoting collaborative
learning and problem-solving
in A.C. circuit topics, fostering
teamwork and mutual respect. | | | | | 2.Magnetism | | Applying magnetism concepts to understand and mitigate the environmental impact of geophysical processes, like earthquakes and volcanic eruptions. | Encouraging students to consider ethical implications of innovations based on magnetism principles, promoting responsible scientific progress. | Promoting collaborative
learning and problem-solving
in magnetism topics, fostering
teamwork and mutual respect. | | | | | Unit-IV | | | | | | | | | 1.Electromagnetic Induction | | Explore how electromagnetic induction is used in renewable energy technologies, such as wind turbines and hydroelectric power plants, to generate electricity and reduce reliance on fossil fuels. | Emphasize the need for proper safety measures when conducting experiments with electromagnetic induction, ensuring that students understand the potential risks and take necessary precautions. | Highlight the connections between electromagnetic induction and other fields, such as engineering, biology, and medicine, promoting a holistic understanding of the subject and its applications. | | | | | 2.Maxwell's
equations and
Electromagnetic
wave propagation | | Inspire students to explore the wonders of electromagnetic phenomena, promoting a culture of curiosity, creativity, and continuous learning in the pursuit of scientific knowledge. | Emphasize the importance of crediting original researchers and respecting intellectual property rights when working with Maxwell's equations and electromagnetic wave propagation, promoting academic integrity and responsible innovation. | Inspire students to explore the wonders of electromagnetic phenomena, promoting a culture of curiosity, creativity, and continuous learning in the pursuit of scientific knowledge. | | 5 | | I | Unit-I | | | responsible innovacion. | | Department of Physics Dattajirao Kadam A.S.C. College, Ichalkaranji | | | | 1.Vector Algebra
and Elecmentary
Calculus | Using vector calculations to optimize resource allocation and minimize waste in environmental conservation efforts. | Encouraging students to
work in teams to solve
vector-related problems,
promoting collaborative
learning and mutual
respect. | Developing critical thinking
and logical reasoning skills
through vector calculations,
promoting analytical thinking. | |---|------------------------|--|---|--|--|--| | | B.ScI
(2022-
23) | PHYSICS
Paper-I DSC- 1
A | 2.Ordinary
Differential
Equations | | Encouraging students to
work in teams to solve
complex problems using
ODEs, promoting
collaborative learning
and mutual respect. | Encouraging students to persist in solving complex ODEs, fostering perseverance and resilience in the face of challenges. | | | 20) | MECHANICS-I | Unit-II | | | | | | | | 1. Conservation
Theroerms | | | | | | | | 2.Rotational Motion | Applying rotational motion concepts to optimize sustainable energy solutions, like wind turbines and hydroelectric power. | Encouraging students to follow safety protocols when conducting experiments involving rotational motion, promoting responsible scientific practices. | Promoting collaborative
learning and problem-solving
in rotational motion topics,
fostering teamwork and
mutual
respect. | | 6 | | PHYSICS Paper-II DSC- 2 A MECHANICS-II | Unit-III | | | | | | | | 1. Gravitation | Encouraging students to consider the ethical implications of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. | Encouraging students to consider the ethical implications of their research in Gravitation and Mechanics, ensuring responsible innovation and application of scientific knowledge. | Highlighting the importance of collaboration and teamwork in scientific research, using examples from the development of gravitational theories and experiments. | | | | | | 2. Oscillations | encouraging
students to design
experiments
involving
oscillations that
are accessible and
inclusive for
diverse
participants. | Using oscillation principles to understand and model climate patterns, promoting environmental awareness and responsibility | Encouraging students to consider ethical implications of innovations based on oscillation principles, promoting responsible scientific progress. | Allowing students to explore oscillations through creative expression, like music or art, fostering innovative thinking and self-expression. | |---|---|---|----|--------------------|---|---|--|--| | | A | The Party | | Unit-IV | | | | | | | | | | 1. Elasticity | Allowing students to explore oscillations through creative expression, like music or art, fostering innovative thinking and self-expression. | Applying elasticity concepts to develop sustainable materials, like biodegradable polymers, for environmental benefit. | Emphasizing the importance of accurate modeling and simulation of elastic behavior, ensuring reliable results and safe design. | Promoting collaborative
learning and problem-solving
in elasticity topics, fostering
teamwork and mutual respect. | | | | | | 2. Surface Tension | Encouraging students to design experiments involving surface tension that are accessible and inclusive for diverse participants. | Applying surface tension concepts to understand and optimize water conservation techniques, like efficient cleaning and irrigation systems. | Emphasizing the importance of accurate measurement and data analysis when studying surface tension, ensuring reliable results. | Allowing students to think creatively when solving surface tension problems, fostering innovative thinking and resourcefulness. | | 7 | | PHYSICS- | II | Unit-I | , par acipantes | | | | | | | Paper-III
DSC- B1
ELECTRICITY
AND
MAGNETISM-I | | Vector Calculus | | Using vector analysis principles to understand and mitigate electromagnetic pollution, promoting environmental responsibility | Emphasizing the importance of accurate modeling and simulation of electromagnetic phenomena using vector analysis, ensuring reliable results. | Encouraging students to think critically when solving vector analysis problems, fostering analytical thinking and problem-solving. | | | | | | Unit-II | | | | | | | | | Electrostatics | | Using electrostatics principles to develop sustainable energy storage solutions, like supercapacitors, reducing environmental impact. | Emphasizing the importance of following safety protocols when working with electrostatic charges and electric fields, ensuring a safe learning environment. | Promoting collaborative learning and problem-solving in electrostatics topics, fostering teamwork and mutual respect. | |---|---|----|-------------------------------|--|---|--|--| | 8 | PHYSICS- | II | Unit-III | | | | | | | Paper-IV
DSC- 2B
ELECTRICITY
AND
MAGNETISM-
II | | 1.A.C. Circuits | Encouraging students to design A.C. circuits that are accessible and inclusive for diverse users, promoting universal design principles. | Using A.C. circuit principles to develop sustainable power systems, like renewable energy grids, promoting environmental responsibility. | Encouraging students to consider ethical implications of innovations based on A.C. circuit principles, promoting responsible scientific progress. | Promoting collaborative
learning and problem-solving
in A.C. circuit topics, fostering
teamwork and mutual respect. | | | | | 2.Network
theorems | | Explore how network
theorems are used to
optimize energy efficiency
in electrical systems,
reducing power
consumption and
promoting sustainable
practices. | Emphasize the importance of properly citing sources and sharing knowledge in network theorem applications, promoting academic integrity and responsible innovation | Inspire students to think creatively and critically when applying network theorems, promoting innovative problemsolving and intellectual curiosit | | | | | 3. Ballistic
Galavanometer | | Discuss how ballistic galvanometers can be used to measure small electrical currents, reducing energy consumption and promoting sustainable laboratory practices | Emphasize the importance of proper calibration and accuracy when using ballistic galvanometers, promoting responsible and reliable scientific practices. | Emphasize the importance of proper calibration and accuracy when using ballistic galvanometers, promoting responsible and reliable scientific practices. | | 4 | | | Unit-IV | | | | | | | | | 1.Magnetism | | Applying magnetism concepts to understand and mitigate the environmental impact of geophysical processes, | Encouraging students to
consider ethical
implications of
innovations based on
magnetism principles, | Promoting collaborative
learning and problem-solving
in magnetism topics, fostering
teamwork and mutual respect. | (ICHALKARANJI | | | | like earthquakes and volcanic eruptions. | promoting responsible scientific progress. | | |--|--|--|---|--|---| | | | 2. Magnetic
materials and their
Properties | Discuss how magnetic materials can be designed and developed with environmentally friendly properties, reducing waste and promoting sustainable technologies. | Emphasize the importance of properly citing sources and sharing knowledge in magnetic materials research, promoting academic integrity and responsible innovation. | Encourage students to consider the social and environmental implications of magnetic materials research, promoting responsible innovation and ethical considerations. | Department of Physics Dattajırao Kadam A.S.C. College, Ichalkaranji. DEPARTMENT OF PHYSICS, B.Sc.- II (2018-19) | Sr.
No. | Name of
the | Title of | Sem. | Name of the | | Details of Cross Cuttin | g Issues relevant with | take the second | |------------|-------------------------|--|--------|---|--|--|--
---| | 110. | Course | Paper | - | Unit | Gender Awareness | Environmental Awareness | Professional Ethics | W | | | | | | Vectors | Inclusion of women in STEM fields Gender bias in scientific research | Energy conservation and sustainability Environmental impact of technology: | 1.data collection, and presentation. 2.Responsible innovation | Human Values 1.Empathy and inclusivity 2.Critical thinking and curiosit | | | | | | Precessional
Motion | Highlighting the achievements of female physicists Breaking stereotypes | 1.Energy efficiency 2. Sustainable materials | 1.Accuracy and precision
2.Crediting sources | 1.Perseverance and curiosity 2.Interdisciplinary connections | | 1 | B.ScII
(2018-
19) | General
Physics,Sound
and Acoustics | Ш | UNIT III 1.
Elasticity 2. Viscosity | 1.contributions of female scientists 2.Gender-neutral design: | 1.Exploring eco-friendly materials
2.Energy harvesting: | 1.Ensuring accurate and reliable data collection 2.Safety protocols | 1.Resilience and adaptability:
2.Creative problem-solving | | | 19) | (Paper V) | per V) | UNIT IV 1. | 1.research on fluid motion and viscosity 2. promoting accessibility and inclusivity. | 1.reducing environmental impact. 2.Pollution mitigation | 1.Ensuring that mathematical models of viscous fluids | 1.Patience and persistence
2.Interdisciplinary connections | | | | | | Sound | 1.Women in music technology
2.Inclusive sound design: | 1.Investigating the impact of noise pollution 2.Sustainable sound systems: | 2.Safety considerations 1.avoiding plagiarism and copyright infringement | 1.Empathy through sound:
2.Creative expression | | | | | | 2. Acoustics of
Buildings: | 1.Gender-neutral spaces
2.Women's voices | 1.Eco-friendly materials
2.Soundscaping | 2.Hearing protection 1.Client confidentiality 2.Honest representation | 1.Designing acoustic spaces 2.Community building | | | | Florence | | UNIT I 1.
Cathode ray
oscilloscope: | 1.Highlighting the contributions of female pioneers in electronics | 1.E-waste management
2.Energy efficiency | 1.reliable measurements when using oscilloscopes, | 1.Curiosity and inquiry
2.Safety and well-being | | | | Electronics
and Computer
Programming
(Paper VI) | | 2. Transistor
amplifier: | 1.Women in electronics design
2.Gender-neutral circuit design | 1.Sustainable electronics 2.Energy-efficient amplifiers: | 1.Respecting intellectual property rights 2.Ensuring proper safety | 1.Creativity and innovation
2.Social responsibility | | | | | | UNIT II 1.
Oscillator | 1.Women in signal processing: | 1.Energy-efficient design: | protocols 1.Accurate documentation | 1.Creativity and experimentation | | | | | | | 2.Encouraging students to design oscillator amplifiers | 2.Sustainable materials | 2.Responsible innovation: | 2.potential social benefits and applications of oscillator | | | | | 2. Operational
Amplifier | 1.Women in analog electronics
2.Gender-inclusive circuit
design | 1.Eco-friendly packaging
2.Energy-efficient design | 1.Respecting intellectual property rights 2.Accurate specification: | 1.innovation and continuous improvement in operational amplifier design | |---------------|-------------------------------------|----|--|--|---|---|--| | | | | UNIT III Digital electronics: | 1.Women in digital design:
2.Inclusive digital tools | 1.Exploring strategies to reduce electronic waste | 1.Ensuring the protection of intellectual property rights 2.Encouraging responsible innovation | 1.Promoting digital literacy and education 2.Exploring the potential of digital electronics | | | | | UNIT IV 1. C-
Language
fundamentals: | 1.coders in the field of C-
Language development
2.Inclusive coding practices:
Women's representation in tech | 1.Exploring techniques for energy-
efficient coding
2.Sustainable software
development:
Energy-efficient coding | 1.Ensuring the integrity and authenticity of C-Language code 2.Promoting responsible coding Data integrity and security | 1.Encouraging C-Language programming 2.Fostering digital citizenship and responsible use of C-Language | | | | | UNIT I
Cardinal points | Representation in scientific illustrations | Energy consumption in laboratory experiments | Accurate notation and credit | Spatial awareness and navigation | | | | | UNIT II 1.
Interference of
light: | Recognizing the achievements of women scientists | Designing energy-efficient instruments for interference | Contributed to interference research | Exploring interference phenomena reflects human curiosity | | B.ScII | Ontino | | 2. Diffraction of light: | Gender-inclusive language in physics education: | Sustainable materials for diffraction experiment | Accurate data interpretation: | Interdisciplinary collaboration | | (2018- | Optics and
Lasers (Paper
VII) | IV | 3. Optical fibers: | Women in telecommunications | Energy efficiency in optical fiber transmission: | Intellectual property rights | Empowerment through technology: | | 15) | VIII | | UNIT III 1.
Resolving
Power: | Women in optics research | Energy efficiency in optical instrumentation | Transparency in research methods | Collaboration and knowledge sharing | | | | | 2. Laser system: | | Energy-efficient laser systems | Safety protocols in laser handling | Responsibility in laser | | | | | UNIT IV Polarization of light: | | Eco-friendly polarization materials | Proper data handling | technology development Exploring polarization phenomena | | | | | UNIT I
Relativity: | Inclusive language in relativity education | Cosmological implications of relativity | Academic integrity in relativity research | Interconnectedness and global citizenship | | B.ScII | Relativity and | | UNIT II Wave particle duality: | Women's contributions to wave-particle duality | Energy efficiency in particle accelerators | | Interdisciplinary connections: | | (2018-
19) | Modern
Physics | IV | UNIT III Vector atom model: | Women's representation in vector calculus | Sustainable applications of vector calculus | Proper citation and credit | Analytical thinking and problem-
solving | | | (Paper VIII) | | UNIT IV 1. X - rays: | Women's contributions to X-ray research | Responsible disposal of X-ray materials | | Improving human health | | | | | 2. Nuclear
Energy Sources: | Inclusive nuclear energy policy-
making | Sustainable nuclear waste management: | | Energy access and equity | Department of Physics Dattajirao Kadam A.S.C College, Ichalkaranji. DEPARTMENT OF PHYSICS, B.Sc.- II (2019-20), (2020-21), (2021-22), (2022-23) | Sr.
No. | Name
of the
Course | Title of Paper | Sem. | Name of
the Unit | Details of Cross Cutting | | | | |------------|---|---|------|--|---|---
--|--| | 1 | B.ScII | | | | Gender Awareness | Environmental
Awareness | Professional Ethics | Human Values | | | (2019-
20),
(2020-
21),
(2021-
22),
(2022-
23) | THERMAL PHYSICS AND STATISTICAL MECHANICS – I (Paper V) | III | Kinetic
Theory of
Gases and
thermomet
ry | Highlight contributions of female physicists in the development of thermal physics and statistical mechanics, breaking stereotypes and inspiring students to pursue careers in physics. | Understanding climate change, encouraging students to explore environmental implications and solutions. | Emphasize the importance of accurate data recording and reporting in thermometry experiments, teaching students the value of honesty and integrity in scientific research. | Foster curiosity and inquiry in students, encouraging them to explore and understand the behavior of gases and thermodynamic systems, reflecting the value of lifelong | | | | | | | Use gender-neutral language in explanations and examples, avoiding stereotypes and promoting equal opportunities in science education. | Relate the laws of
thermodynamics to
energy conservation and
efficiency, emphasizing
the importance of
sustainable practices in
reducing energy
consumption. | Stress the need for following safety protocols when handling laboratory equipment, demonstrating respect for colleagues and responsibility in scientific inquiry. | learning. Highlight the connections between thermodynamics and other fields, such as biology, chemistry, and engineering, promoting a holistic understanding | | | B.ScII
(2019-
23) | WAVES AND
OPTICS (Paper
VI) | III | ion of | Understand the concept
of superposition in
harmonic oscillators | Explore how harmonic oscillators are used to model vibrations in natural systems. | Highlighting the need for responsible innovation and consideration of ethical implications | of the natural world. Fostering curiosity and creativity in scientific inquiry | | Coupled
Oscillation
s: | Encourage male and female students to work together to understand and solve problems related to coupled oscillations, promoting collaborative learning and mutual respect. | Relate coupled oscillations to sustainable systems, such as coupled pendulums, exploring how understanding these systems can lead to sustainable solutions in energy and resource management. | 2. Discuss the potential applications of coupled oscillations in technology and engineering, highlighting the need for responsible innovation and consideration of ethical implications. | Encourage students to
persevere in
understanding complex
coupled oscillation
systems, fostering
persistence | |---|--|---|--|--| | Waves
Motion
and
Ultrasonic
waves | Ensure equal opportunities for male and female students to participate in experiments with waves and ultrasonic waves, promoting hands-on learning and equal access to resources | 2. Relate wave motion to
the development of
sustainable materials,
such as acoustic
metamaterials, which can
reduce noise pollution
and promote energy
efficiency. | Discuss the ethical implications of patenting and sharing research on wave motion and ultrasonic technology, highlighting the need for responsible innovation and fair credit. | Highlight the connections between wave motion and music, medicine, and other fields, promoting a holistic understanding of the natural world and human experience. | | Sound and
Acoustics
of
buildings | Highlight the contributions of female architects and acousticians | Discuss the use of sustainable materials in building design to reduce environmental impact, such as using recycled materials for sound absorption | Emphasize the importance of considering ethical implications in building design, such as ensuring accessibility and safety for all occupants. | Encourage students to design buildings with acoustic considerations that promote accessibility and inclusivity for all individuals, regardless of abilities | | Viscosity | | Relate viscosity to energy efficiency in fluid flow, exploring how understanding viscosity can lead to sustainable solutions in industrial processes. | Encourage collaboration and knowledge-sharing among researchers working on viscosity-related projects, promoting responsible innovation and fair credit. | Promoting a sense of purpose and relevance in scientific learning. | | 3 | B.ScII | THERMAL | IV. | Physics of low pressure | Ensure that laboratory settings for low-pressure experiments are inclusive and accessible for all students, regardless of gender or ability | Explore the environmental impact of vacuum technology, such as the use of resources and generation of waste, and discuss ways to minimize harm | Discuss the ethical implications of patenting and sharing research on low-pressure technology, highlighting the need for responsible innovation | Encourage students to
explore and understand
the behavior of gases at
low pressures, fostering
curiosity and inquiry in
scientific learning | |---|---|---|-----|---------------------------------|---|--|---|--| | | (2019-
20),
(2020-
21),
(2021-
22),
(2022-
23) | PHYSICS AND
STATISTICAL
MECHANICS – II
(Paper VII) | IV | Thermody
namic
Potentials | | Discuss the connections
between thermodynamic
potentials and climate
change, such as the role of
entropy in understanding
global warming | Emphasize the importance of accurate calculations and data analysis when working with thermodynamic potentials, teaching students the value of honesty and integrity in scientific research. | Encourage students to
approach complex
thermodynamic
potential problems with
persistence and rigor | | | | | | Theory of
Radiation | Highlight the contributions of female scientists, such as Marie Curie, who pioneered radiation research, inspiring female students to pursue careers in physics. | Radiation safety: Discuss
the environmental impact
of radiation and the
importance of safe
handling and disposal of
radioactive materials,
promoting sustainable
practices in laboratory
settings. | Responsible data handling:
Emphasize the importance
of responsible data
handling and reporting in
radiation research,
teaching students the value
of honesty and integrity in
scientific research. | Promoting awareness of potential risks and benefits to society. | | | | | | statistics | Highlight the contributions of female scientists, such as Emmy Noether, who worked on statistical mechanics and its applications, inspiring female students to pursue careers in physics. | Relate classical statistics
to energy efficiency and
optimization, exploring
how understanding
statistical systems can
lead to sustainable | of accurate data collection | Develop critical thinking
skills in understanding
statistical systems | | | D.C. H | | | Quantum
statistics | Analyzing how gender biases might influence research methodologies and interpretations in quantum statistics can help promote more inclusive and accurate scientific inquiry | As computational simulations become increasingly important in quantum statistics, considering their environmental impact and exploring ecofriendly alternatives is essential | Ensuring the reproducibility of results and maintaining data integrity are crucial ethical considerations in quantum statistics research. | 2. Quantum statistics often requires collaboration across disciplines, promoting teamwork, communication, and mutual respect among researchers from | |---|--|------------------|----|---
--|--|--|---| | 4 | 4 B.ScII (2019-
20), (2020-
21), (2021-
22), (2022-
23) WAVES AND OPTICS-II (Paper VIII) | OPTICS-II (Paper | IV | Cardinal
points | Cardinal points, used to describe spatial orientations, are often illustrated with male figures, highlighting the need for more inclusive and diverse representations in scientific diagrams | Considering environmentally friendly materials in the design of equipment used to demonstrate cardinal points can reduce waste and promote eco-friendly practices. | Properly attributing and notating cardinal points in research and publications maintains academic integrity and respects the contributions of others. | diverse backgrounds. Understanding cardinal points develops spatial awareness, essential for navigation and orientation, reflecting the human value of self-awareness. | | | | | | Resolving
Power of
optical
instrument
s | Women in optics research: Highlighting the contributions and achievements of women in optics research, such as Maria Goeppert Mayer's work on optical resonance, promotes gender equality | Considering the environmental impact of producing optical instruments, such as reducing waste and using eco-friendly materials, promotes sustainability | Transparency in research methods: Clearly documenting and sharing research methods and data related to optical instrumentation ensures reproducibility | The pursuit of improving the resolving power of optical instruments reflects human curiosity and the drive for innovation, leading to advancements in various fields. | | | | | | | Recognizing the achievements of women scientists, such as Emilie du Châtelet's work on light polarization, highlights their | Developing sustainable materials for polarization filters and other applications reduces environmental impact and promotes ecofriendly practices. | others in polarization research maintains | Polarization research often involves collaboration across disciplines, highlighting the importance of teamwork, mutual | | Interf | contributions to the field. | | | respect, and open communication. | |--------|---|--|--|--| | | achievements of women
scientists, such as
Sophie Germain's work
on diffraction and
interference | Using eco-friendly materials and minimizing waste in interference experiments promotes sustainability and reduces environmental impact | Ensuring accurate and transparent representation of interference data maintains research integrity and avoids misinterpretation. | Interference research
often involves
collaboration and
knowledge sharing
among researchers | | | Recognizing the achievements of women scientists, such as Maria Goeppert Mayer's work on X-ray diffraction | Using eco-friendly materials and minimizing waste in diffraction experiments promotes sustainability and reduces environmental impact. | Properly citing and crediting researchers who contributed to diffraction research maintains academic honesty and respects intellectual property. | Diffraction research often involves collaboration across disciplines, highlighting the importance of teamwork, mutual respect, and open communication. | HEAD, Department of Physics Dattajirao Kadam A.S.C College, Ichalkaranji. #### DEPARTMENT OF PHYSICS, B.Sc.- III (2018-19), (2019-20) Details of Cross Details of Cross Cutting Issues relevant with Gender Awareness, Environmental Awareness, **Professional Ethics and Human Values** | Sr.
No. | Name
of the | Title of Paper | Sem. | Name of the | | Details of C | Cross Cutting Issues relevant wi | | | | |------------|---------------------------------|--------------------------------|------|--|--|---|--|--|------------------------------|--------------| | | Course | | | Unit | Gender Awareness | | | th | | | | | | | | Orthogonal
Curvilinear Co- | Curvilinear Co- | Orthogonal
Curvilinear Co-
ordinates | The second second | Awareness Envornmemntal modelling | Mathematical modeling may be | Human Values | | | | | | Basic Concepts in
Statistical Physics | Ensuring diverse representation | | attroped using PDEs | models of opinoin dynamics, culture diffusion | | | | | B.Sc | Mathematical & | | | can lead to more accurate and inclusive results, reflecting a broader range of experiences and perspectives. | requires consideration of various environmental factors and their interactions. | Maintaining transparency in
methodologies and results is
crucial for ethical research and
professional practices, fostering
trust and reproducibility. | Statistical physics can be applied to assess and address social inequalities, helping to create more equitable and just systems by understood. | | | | 1 | (2018-
19),
(2019-
20) | Statistical Physics (Paper-IX) | v | Maxwell-Boltzman
Statistics and Black
Body Radiation | VOII could motorbank at | a more balanced and
sustainable "distribution"
in the context of | | disparities. | | | | | | | | Quantum Statistics | Ensuring diverse participation can lead to more comprehensive research and innovative approaches. | ecological systems. Advances in quantum technologies, like quantum computing, could have significant environmental implications. | Ethical considerations in conducting and reporting research are vital. | Balancing the pursuit of cutting-edge research with the need for making advancements accessible and beneficial to society as a whole is important. Quantum technologies should ideally enhance human well-being and the state of t | | | | | B.Sc
III | Solid state
Physics and | | Crystal Structure | Promoting gender equality in science helps ensure that | understanding crystal
structures can be crucial | In emetall | human well-being and equity. | | | | 2 | (2018-
19),
(2019-
20) | Solid State Devices (Paper-X) | v | | talents contribute to advancements in these fields. | that are environmentally | involve adhering to standards of | medical technologies, energy solutions,
and materials that improve quality of life,
aligning with broader human values and
societal benefits. | | | | | | | | X – Ray
Diffraction by
Crystals | Increasing female representation in scientific research helps broaden perspectives and can lead to more comprehensive problemsolving approaches.
| XRD research can include efforts to develop and use environmentally friendly materials and processes. | Respecting intellectual propert
and giving appropriate credit to
collaborators and sources of
ideas or data is essential for
ethical practice in research. | Research should aim to enhance quali
of life and address pressing global
challenges. | |-----|---|--------------------------------------|---|---|--|---|--|--| | | | | | Free Energy
Theory, Band
Theory of Solids | Gender awareness involves
encouraging equal opportunities
and representation in research
and academia. | Sustainable material choices, such as those with minimal environmental impact, are crucial. | Accurate and honest representation of data, including the implications of band theory findings, is essential for scientific | Researchers should consider | | | | | | Field Effect
Transistor,
Unijunction
Transistor | | The manufacturing processes, operation, and disposal of these devices contribute to energy consumption and carbon | integrity. exploitative working conditions or conflict minerals. | work impacts society and strive to improve human well-being. The widespread use of transistors in technology has led to significant advancements in communication, education, and healthcare. | | | | | | Introduction to Mechanics | Actively encourage students of
all genders to participate in
mechanics-related projects and
activities. Provide mentorship
and support to ensure equitable
opportunities. | emissions. Emphasize the importance of designing mechanical systems with environmental sustainability in mind. | Emphasize the responsibility engineers have toward society and the environment, including the need for transparent communication and | Foster a collaborative environment in projects and problem-solving activities, highlighting the value of teamwork and mutual respect. | | 3 . | B.Sc
III
(2018-
19),
(2019- | Classical
Mechanics
(Paper-XI) | v | Moving Co-
ordinate System,
Coupled
Oscillations | recognizing that gender norms
and roles can shift depending on
cultural, historical, or
situational contexts can help in
analyzing and addressing
gender inequality in various
environments. | a moving co-ordinate
system might be used to
analyze how
environmental issues
evolve over time and
across different locations. | accountability in their work. Applying a moving co-ordinate system to professional ethics involves considering how ethical standards and practices might change with different contexts or over time. | A moving co-ordinate system can help explore how these values shift and evolve in different settings. | | | 20) | | | Langrangian Formulation Techniques of | | | could impact public safety or the environmentH16:I16 | in designing systems, human values | | | | | | Calculus of
Variation | | This includes minimizing energy consumption or | professionals must maintain
transparency about their methods | should be a priority The application of calculus of variations should consider human values like equity and fairness. | Department of Physics Dattajırao Kadam A.S.C College, Ichalkaranji. | | | | | Doublet Fine
Structure | Promoting gender awareness can help create a more inclusive environment where different viewpoints contribute to advancements in fields like atomic and molecular physics. | influence the environmen
helps ensure that
innovations contribute
positively to
sustainability. | Ethical guidelines help researchers navigate the complexities of their work, including the implications of their findings on society and the environment. | advancements in this field can impact health, technology, and the quality of life | |---|---|--|----|--|--|---|---|---| | 4 | B.Sc
III
(2018-
19),
(2019- | Atomic Physics,
Astronomy and
Astrophysics
(Paper- XII) | v | Effects of Magnetic field on Atomic Spectra | Ensuring diverse representation in research teams can influence the scope and interpretation of findings, leading to more inclusive and comprehensive outcomes. | Ensuring that research practices and technologies are environmentally friendly aligns with broader environmental awareness goals. | ethical research practices
underpin credible results and
applications. | addressing potential risks and prioritizing safety reflects human values concerning well-being and precaution. | | | 20) | (raper- XII) | | Molecular Spectra,
Raman Effect | | the development of more
sustainable materials and
processes, promoting
environmental
sustainability. | The ethical implications of how molecular spectroscopy research is used, such as in the development of new technologies or materials | Communicating the significance of molecular spectroscopy findings to the public can enhance societal understanding and appreciation of science, fostering informed decision-making and value- | | | | | | Cosmology, Milky
Way Galaxy and
Solar System | Efforts to promote gender equality in cosmology include encouraging women to enter the field and addressing biases that might affect their work and recognition. | The environmental impact of space missions, such as space debris and resource consumption, is an emerging concern. | Ethical considerations include
how scientific findings are
communicated to the public,
ensuring that information is
accurate and accessible. | driven progress. Cosmology raises profound questions about human existence, our place in the universe, and our future. These questions can influence human values and priorities. | | | | | | Accelerator,
Nuclear detectors | | environmental radiation | Hiding or downplaying radiation
data can have serious
consequences for public health
and safety. | There is a value in building trust between the public and those who manage nuclear technology. | | 5 | B.Sc
III
(2018-
19),
(2019- | Nuclear and
Particle Physics
(Paper- XIII) | VI | Structure of
nucleus and its
properties | | Effective waste management and the environmental impact of | Ethical practice involves transparent communication about | The study of nuclear properties helps in understanding the potential health impacts of radiation exposure | | | 20) | | | Nuclear Energy
Levels | energy sector, both in technical roles and leadership positions. | Environmental awareness includes understanding the challenges of waste disposal and the impact t | transparent communication about the risks and benefits of nuclear | The long-term impacts of nuclear waste and the safety of future generations are significant human values concerns that influence decision-making in the nuclear sector. | | | | | Nuclear Reactions,
Elementary
Particles | Women are often | Proper disposal and long
term storage solutions ar
critical to minimizing
ecological impact. | the goals, benefits, and
implications of particle physics | and discourse : | |--|--|----|---|--|--|--|--| | | | | Energy | underrepresented in the energy sector, including wind energy. | Promoting environmenta
awareness can increase
support for wind energy
projects. | Raising awareness about the environmental benefits and challenges of wind energy can lead to more informed public support and more effective. | Valuing diverse perspectives and respecting the rights and needs of all individuals affected by energy projects is fundamental to human
values. | | B.Sc
III
(2018- | Energy Studies and Material | | Solar Energy | Solar energy initiatives can provide training and educational opportunities for women, enhancing their skills and career prospects. | Solar energy is a renewable resource that reduces dependence on fossil fuels, cutting greenhouse gas emissions and promoting environmental sustainability. | environmental policies. Ethical practices in the solar industry include transparency in business operations, fair pricing, and honest communication with stakeholders. | Involving local communities in solar projects fosters a sense of ownership and shared benefit, aligning with values of cooperation and mutual respect. | | 19),
(2019-
20) | Science (Paper-XIV) | VI | Magnetism,
Superconductivity | Promoting gender awareness
can lead to more inclusive
educational and professional
environments, which can help
in achieving a diverse range of
perspectives and innovations. | Understanding these technologies and their impacts can foster environmental awareness and encourage the development of sustainable practices. | This includes ensuring the responsible use of technologies, avoiding environmental harm, and maintaining integrity in research and development. Ethical considerations are important in developing and applying technologies that use magnetism. | ensuring that scientific advancements
benefit society and do not harm
individuals or the environment reflects
core human values. | | | | | Nanothechnology Electrostatics and | | managed carefully to
avoid pollution or
unintended consequences | ethical considerations regarding its dual-use potential are crucial. | Ensuring that nanotechnology applications do not compromise human health and safety is a fundamental concern. | | B.Sc
III
(2018-
19),
(2019-
20) | Electrodynamics & Electromagnetic Waves (Paper – XV) | VI | Charged Particle Dynamics | | Understanding the dynamics of these particles is crucial for assessing radiation risks in various contexts, such | energy must be lear 1 | Educating the public about the effects of charged particles, both beneficial and narmful, aligns with the values of ransparency and empowerment. | | | | | | Time Varying Fields Maxwell's | Gender disparities can influence
environmental policies and
professional ethics. | awareness evolve with
scientific advancements
and socio-economic
changes. | Ethical standards must
continually address evolving
issues in gender and
environmental contexts. | The interplay between gender, environmental awareness, and professional ethics reflects broader human values. | |---|---------------------------------|---------------------------------------|----|--|--|---|---|--| | | | | | Equations | Promoting gender awareness
helps ensure that both women
and men have equal
opportunities to contribute to
and benefit from advancements
in these areas. | optimizing energy efficiency and minimizing electromagnetic pollution are crucial for reducing environmental harm. | Ethical practices also involve transparency in research and application. | The applications of Maxwell's equations such as in communications and electronics, have significant societal impacts. | | | | | | Electromagnetic Waves Schrodinger's | Potentially leading to gaps in understanding and healthcare recommendations. | Awareness of the environmental impact of these technologies can drive more sustainable practices and innovations. | Ethically address the potential health risks associated with electromagnetic waves and provide accurate information to consumers. | Ensuring the safety of electromagnetic devices and minimizing any potential harm aligns with the value of protecting human health and well-being. | | | | | | Equation | | Schrödinger's Wave Equation highlights the probabilistic nature of particles, emphasizing the interconnectedness of systems. | The probabilistic nature of quantum mechanics can be paralleled with the uncertainty often faced in ethical decision-making. | The equation highlights the complexity of the natural world, which can be extended to an appreciation for the complexity of human life and societies. | | | B.Sc | | | Applications of
Schrodinger's
Equation | Efforts to invest | the behavior of pollutants
or the interactions
between various
environmental molecules. | Ethical practices in research ensure that findings are reliable and beneficial to society. | This can promote a deeper understanding of the interconnectedness of all life forms and the environment, fostering a value system that prioritizes the protection of ecosystems. | | 8 | (2018-
19),
(2019-
20) | Quantum
Mechanics
(Paper - XVI) | VI | | | The study of hydrogen
and its compounds can
lead to more sustainable
chemical processes and
materials, promoting
environmental
stewardship. | The ethical use of hydrogen
technology, including its
application in energy and
industry, is crucial. | Considering the human values of sustainability and welfare in these contexts is essential. | | | | | | Operators in
Quantum
Mechanics | | This can be metaphorically related to | professionals act on society
through their work, with ethical
implications for their actions. | Just as particles exist in multiple possibilities until measured, individuals have the potential to pursue various paths in life, shaped by their values and choices. | Department of Physics Dattajırao Kadam A.S.C College, Ichalkaranji DEPARTMENT OF PHYSICS, B.Sc.- III (2020-21), (2021-22), (2022-23), (2023-24) | Sr.
No. | Name of the | Title of
Paper | Se | Name of | | Details | of Cross Cutting Issues relevant with | | |------------|---|-----------------------------------|----|--|------------------|---|--|---| | | Course | Taper | m. | the Unit | Gender Awareness | Environmental Awareness | Professional Ethics | | | | | | | Partial Differential Equation Frobenious | | Environmental modelling | Mathematical modelling may be developed using PDEs | Human Values models of opinion dynamics, culture diffusion | | | B.Sc III
(2020-21), | Mathematical | | Method and
Special
Functions | | Fourier series are used in climate models to predict temperature variations, while Bessel functions can describe wave propagation in oceans and atmosphere. | The use of special functions in real-
world applications demands high
ethical standards | The mathematical tools used in environmental modelling reflect human values like sustainabilit and stewardship of the Earth. | | 1 | (2021-22),
(2022-23),
(2023-24) | Physics
(Paper-IX) | v | Special
Integrals | | | special integrals in practical
applications, such as engineering or
economics, professionals must ensure
the accuracy and validity of their
calculations | these mathematical tools can help ensure that resources are allocated fairly and equitably, reflecting human values like justice and fairness. | | | | | | Analysis | | essential for assessing
environmental risks, such as natural
disasters or the impact of hazardous
substances | Ethical practice involves safeguarding
this data and ensuring it is used
appropriately, particularly in contexts
like cryptography, data security, and
privacy | the development of algorithms that influence social media or justice systems must be scrutinized to prevent biases and unintended harmful consequences. | | | B.Sc III
(2020-21),
(2021-22),
(2022-23),
(2023-24) | Quantum
Mechanics
(Paper-X) | | Matter
Waves | | | The concept of wave-particle duality suggests that actions at the microscopic level can have significant impacts at a macroscopic level. | Just as particles can behave as waves or particles humans must navigate between personal goals and the collective good. | | | | | | Schrodinger 's Wave Equation Operators in | Schrödinger's Wave Equation highlights the probabilistic nature of particles, emphasizing the interconnectedness of systems. | The probabilistic nature of quantum mechanics can be paralleled with the uncertainty often faced in ethical decision-making. | The equation highlights the complexity of the natural world, which can be extended to an appreciation for the complexity of human life and societies. | |---|---|---|------------------------------------|--|--
--|---| | | | | | Quantum
Mechanics
Application | Uncertainty often exists in forecasting climate change, pollution impacts, and other environmental factors. | Professionals act on society through
their work, with ethical implications for
their actions. | Just as particles exist in multiple possibilities until measured, individuals have the potential to pursue various paths in life. | | | | | | s of
Schrodinger
Equation | The behaviour of pollutants or the interactions between various environmental molecules. | Ethical practices in research ensure that findings are reliable and beneficial to society. | This can promote a deeper understanding of the interconnectedness of all life forms and the environment, fostering a value system that | | | | | | Lagrangian
Formulation | Modelling environmental systems | Could impact public safety or the | In designing systems, human values should be a | | | B.Sc III
(2020-21), | Classical
Mechanics | | Techniques
of Calculus
of Variation | This includes minimizing energy consumption or reducing waste, which directly contributes to environmental conservation. | environment. professionals must maintain transparency about their methods and results. | priority. The application of calculus of variations should consider human values like equity and fairness. | | 3 | (2021-22), and Classical
(2022-23), (2023-24) ics (Paper-XI) | V | Special
Theory of
Relativity | ecrai leory of lativity | Profound implications for science and technology, leading eventually to developments like nuclear energy. | | | | | | | | Charged
Particles
Dynamics | Radiation risks in various contexts,
such as nuclear power plants,
medical imaging, and space
exploration. | The pursuit of innovation in fields like medical physics, telecommunications, | Educating the public about the effects of charged particles, both beneficial and harmful, aligns with the values of transparency and empowerment. | | | | | | Digital
Electronics | Proper disposal and recycling are critical to minimizing environmental harm, as e-waste contains hazardous materials. | ensure that devices and systems are
secure, protecting users' personal data | Addressing this issue involves creating affordable and accessible technology for underserved communities. | | 1 | B.Sc III
(2020-21),
(2021-22),
(2022-23),
(2023-24) | Digital and Analog Circuits and Instrumentatio n (Paper- XII) | v | Transistors Amplifier and Sinusoidal Oscillators | The manufacturing processes, operation, and disposal of these devices contribute to energy consumption and carbon emissions. | The state of s | The widespread use of transistors in technology has led to significant advancements in communication, education, and healthcare. | | | | | | Cathode
Ray
Oscilloscop
e | | Professionals using CROs must ensure accurate calibration and operation of the device to produce reliable measurements | | | | | | | Operational
Amplifier
and Timer | | which can contribute to reduced
power consumption in electronic
devices. | Ethical considerations include transparency in reporting device capabilities and limitations. | imers that perform reliably enhance user trust an
safety, reflecting values of dependability and | |---|---|---|----|--|---|---|--|--| | | | | | General
Properties
of Nuclei
and Nuclear
Model | | Effective waste management and the environmental impact of nuclear power are significant concerns. | Ethical | responsibility. The study of nuclear properties helps in understanding the potential health impacts of radiation exposure | | 5 | B.Sc III
(2020-21),
(2021-22),
(2022-23),
(2023-24) | Nuclear and
Particle
Physics
(Paper- XIII) | VI | Particle
Accelerators | Women are often
underrepresented in
the nuclear energy
sector, both in
technical roles and
leadership positions. | Environmental awareness includes understanding the challenges of waste disposal and the impact on ecosystems. | Ethical considerations involve maintaining public trust through transparent communication about the risks and benefits of nuclear energy. | The long-term impacts of nuclear waste and the safety of future generations are significant humar values concerns that influence decision-making in the nuclear sector. | | | | | | Nuclear
Detectors | | Nuclear detectors play a crucial role in monitoring environmental radiation levels. | Hiding or downplaying radiation data can have serious consequences for public health and safety. | There is a value in building trust between the public and those who manage nuclear technology | | | | | | Particle
Physics | | Proper disposal and long-term storage solutions are critical to | Engaging with the public about the goals, benefits, and implications of | The technologies and discoveries in particle | | | B.Sc III | S. I'. I S. | | Crystal
Structure | Different perspectives
and talents contribute
to advancements in
these fields. | minimizing ecological impact. Understanding crystal structures can be crucial for developing materials that are environmentally friendly or for improving processes related to waste management and resource efficiency. | particle physics research is crucial. In crystallography and materials science, professional ethics involve adhering to standards of accuracy, honesty, and integrity in research and reporting. | physics must be used responsibly. medical technologies, energy solutions, and materials that improve quality of life, aligning with broader human values and societal benefits. | | 6 | (2020-21),
(2021-22),
(2022-23),
(2023-24) | Solid State
Physics
(Paper- XIV) | VI | Diffraction | Increasing female representation in scientific research helps broaden perspectives and can lead to more comprehensive problem-solving approaches. | XRD research can include efforts
to develop and use environmentally
friendly materials and processes. | Respecting intellectual property and giving appropriate credit to collaborators and sources of ideas or data is essential for ethical practice in research. | Research should aim to enhance quality of life and address pressing global challenges. | | | | | Magnetic
Properties
of Matter | Promoting gender
awareness can lead to
more inclusive
educational and
professional
environments, which
can help in achieving
a diverse range of
perspectives and
innovations. | Understanding these technologies and their impacts can foster environmental awareness and encourage the development of sustainable practices. | This includes ensuring the responsible use of technologies, avoiding environmental harm, and maintaining integrity in research and development. Ethical considerations are important in developing and applying technologies that use magnetism. | ensuring that
scientific advancements benefit society and do not harm individuals or the environment reflects core human values. | |---|--|----|---|--|---|--|--| | | | | Elementary
Band
Theory of
Solids | Gender awareness
involves encouraging
equal opportunities
and representation in
research and
academia. | Sustainable material choices, such as those with minimal environmental impact, are crucial. | Accurate and honest representation of data, including the implications of band theory findings, is essential for scientific integrity. | in electronic devices or renewable energy
technologies, affect daily life. Researchers should
consider how their work impacts society and
strive to improve human well-being. | | D.C. | | | Atomic
Spectra | Promoting gender
awareness can help
create a more
inclusive environment
where different
viewpoints contribute
to advancements in
fields like atomic and
molecular physics | Being aware of how scientific advancements influence the environment helps ensure that innovations contribute positively to sustainability. | Ethical guidelines help researchers navigate the complexities of their work, including the implications of their findings on society and the environment. | advancements in this field can impact health, technology, and the quality of life. | | B.Sc III
(2020-21),
(2021-22),
(2022-23),
(2023-24) | Atomic and
Molecular
Physics and
Astrophysics
(Paper – XV) | VI | Molecular
Spectra | Ensuring diverse representation in research teams can influence the scope and interpretation of findings, leading to more inclusive and comprehensive outcomes. | Ensuring that research practices and technologies are environmentally friendly aligns with broader environmental awareness goals. | ethical research practices underpin credible results and applications. | addressing potential risks and prioritizing safety reflects human values concerning well-being and precaution. | | | | | Raman
Spectra | | the development of more
sustainable materials and processes,
promoting environmental
sustainability. | The ethical implications of how molecular spectroscopy research is used, such as in the development of new technologies or materials. | Communicating the significance of molecular spectroscopy findings to the public can enhance societal understanding and appreciation of science, fostering informed decision-making and value-driven progress | | | | | | Structure of
Universe,
Stellar
Evolution | gender equality in
cosmology include
encouraging women
to enter the field and
addressing biases that
might affect their
work and recognition. | The environmental impact of space missions, such as space debris and resource consumption, is an emerging concern. | Ethical considerations include how scientific findings are communicated to the public, ensuring that information is accurate and accessible. | Cosmology raises profound questions about human existence, our place in the universe, and our future. These questions can influence human values and priorities. | |---|---|---------------------------------------|----|---|--|--|--|--| | | | | | Energy and Wind Energy | Women are often
underrepresented in
the energy sector,
including wind
energy. | Promoting environmental awareness can increase support for wind energy projects. | Raising awareness about the environmental benefits and challenges of wind energy can lead to more informed public support and more effective environmental policies. | Valuing diverse perspectives and respecting the rights and needs of all individuals affected by energy projects is fundamental to human values. | | | B.Sc III
(2020-21),
(2021-22),
(2022-23),
(2023-24) | Energy
Studies and | | Energy,
Biomass
Energy | Solar energy initiatives can provide training and educational opportunities for women, enhancing their skills and career prospects. | Solar energy is a renewable resource that reduces dependence on fossil fuels, cutting greenhouse gas emissions and promoting environmental sustainability. | Ethical practices in the solar industry include transparency in business operations, fair pricing, and honest communication with stakeholders. | Involving local communities in solar projects fosters a sense of ownership and shared benefit, aligning with values of cooperation and mutual respect. | | 3 | | Materials
Science
(Paper - XVI) | VI | Supercondu
ctivity | Promoting gender
awareness can lead to
more inclusive
educational and
professional
environments, which
can help in achieving
a diverse range of
perspectives and
innovations. | Understanding these technologies and their impacts can foster environmental awareness and encourage the development of sustainable practices. | This includes ensuring the responsible use of technologies, avoiding environmental harm, and maintaining integrity in research and development. Ethical considerations are important in developing and applying technologies that use magnetism. | ensuring that scientific advancements benefit society and do not harm individuals or the environment reflects core human values. | | | | | | | education and career | The disposal and recycling of nanomaterials need to be managed carefully to avoid pollution or unintended consequences. | ethical considerations regarding its dual-use potential are crucial. | Ensuring that nanotechnology applications do not compromise human health and safety is a fundamental concern. | HEAD, Department of Physics Dattajırao Kadam A.S.C College, Ichalkaranji.